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Abstract—The scarcity of efficient charging infrastructures
has suppressed penetration rate of Electric Vehicles (EVs).
This paper mainly focuses on the Fast Charging Station (FCS)
placement problem, especially with the elastic demand. We first
propose the distance preference and waiting time preference
to capture the elastic EV charging demand. Moreover, a fixed-
point equation is proposed to illustrate the relationship between
serving demand rate and waiting time at station. We further
formulate the problem of FCS placement with elastic demand as
a bi-level optimization problem. In the upper level, we propose a
heuristic algorithm to determine the optimal location of charging
stations, with the goal of maximizing overall system profit. In
the lower level, queueing theory is utilized to analyze the optimal
capacity of each charging station. The sufficient condition for the
existence of optimal station capacity is given. Simulation results
demonstrate the effectiveness of our approach in improving
system profit and reducing demand loss rate.

I. INTRODUCTION

Benefited from recent technology innovation in batteries,
EVs are expected to spark an energy revolution in transporta-
tion [1]–[3]. Unfortunately, the scarcity of efficient charging
infrastructures has suppressed the widespread usage of EVs.
As current mainstream charging method, slow charging fed in
residential areas or public charging spots, usually takes many
hours (6-8 hours) to get EVs fully charged due to low voltage.

Facilitated by powerful commercial charging stations, fast
charging together with professional management would be
a promising approach [4]–[5]. Its essence lies in exploiting
market power to provide Quality of Service (QoS) guaran-
teed services. However, such potential is still under utilized,
especially with the tension between surging charging demand
and increasing shortage station capacity. All of this is placing
enormous pressure on charging service providers to make rea-
sonable decision for planning commercial charging stations.

The advent of fast charging technology, has enabled more
flexibility for EV users to adjust charging strategies, bringing
forward higher request to service offerings. Compared to fuel
vehicles, EVs usually have shorter driving range and longer
“refueling” time [6]–[7]. Such distinctions have effects on two
main aspects: (1) the mileage anxiety pushes EV users away
from far charging stations [8]; (2) heavily-loaded stations are
often less preferred choices for EV users. In particular, EV
users’ elastic charging demand with respect to travel distance
and waiting time at station is highlighted in this paper.

There has been substantial researches on FCS placement
problem [9]–[14]. Actually, inappropriate charging station
placement will not only bring inconvenience to EV users’
daily charging, but also reduce the profit of charging service
provider [9]–[10]. In order to minimize social cost, Xiong et
al. [11] formulated the FCS placement as a bi-level problem,
where optimal station allocation is determined by capturing
competitive charging behaviors of EV users. However, these
works typically either focus on random charging demand case,
or separate travel distance from waiting time in elastic demand
case. Lam et al. [12] considered the mileage anxiety of EV
users, and incorporated network flow model into charging
station placement problem. But they ignored the capacity of
charging stations. Gimeńez et al. [13] considered the loss of
EV users due to long distance but neglected the effect of
waiting time.

To this end, we are inspired to study the FCS placement
incorporating the elastic charging demand. It is based on
the fact that the charging demand is elastic with respect to
distance preference and waiting time preference. In particular,
a fixed-point equation is proposed to capture the relationship
between serving demand rate and waiting time at station. We
further formulate the FCS placement with elastic demand as a
bi-level optimization problem. In the upper level, a heuristic
algorithm is proposed to determine the optimal location of
charging stations by maximizing system profit. In the lower
level, the multiple-server queueing model is used to allocate
the charging spots number at each station. Moreover, we
analyze the sufficient condition for the existence of optimal
station capacity.

The contributions of this work are summarized as follows:
• This paper addresses the issue of FCS placement with

elastic charging demand. To our knowledge, this is
the first paper that introduces elastic charging demand
about distance preference and waiting time preference to
fast charging network model. Specifically, a fixed-point
equation is proposed to describe the relationship between
serving demand rate and waiting time at station.

• With elastic charging demand, the FCS placement prob-
lem actually falls into nonlinear integer programming
problem, where neither desirable nor effective approach-
es are available. We first prove that the fixed-point
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equation has and only has one root and the Newton-
Raphson method is adopted to solve it. After that, a
heuristic algorithm is developed to determine the optimal
location and capacity of charging stations.

• Simulation results demonstrate the effectiveness of our
approach in improving system profit and reducing de-
mand loss rate. In addition, the impacts of EV user
number and fix station cost on placement strategies are
also illustrated.

The rest of this paper is organized as follows. First we
provide the details of system model and formulate a bi-
level optimization problem in Section II. In Section III, we
analyze the lower-level problem and upper-level problem of
FCS placement separately. A heuristic algorithm is proposed
to determine the location and capacity of charging stations. In
Section IV, we present the numerical results of our approach.
Finally, we conclude our work in Section V.

Fig. 1. Illustration of Fast Charging System

II. SYSTEM MODEL AND PROBLEM
FORMULATION

The details of fast charging system are illustrated in this
section. We first introduce service region topology and charg-
ing demand model. After that, the problem of FCS placement
with elastic charging demand is presented.

A. Demand Zones and Charging Stations

Consider the general fast charging system consisting of
EV users and charging service provider. The provider is
responsible for providing charging services for EV users in
service region G. We divide region G into I demand zones
in the discrete set I = {1, 2, ..., I}. In particular, we treat EV
user demand in each zone i ∈ I as a bundle, i.e. one EV
charging flow generated from the center of zone i. Assume
the charging flow follows Poisson distribution π(λmax

i ), where
λmax
i is the maximum EV charging demand rate in zone i.
To better cater to such demand in service region G,

the provider first determines J candidate charging station
locations in discrete set J = {1, 2, ..., J}. Let matrix dij
denote the shortest path distance between the center of zone
i ∈ I and candidate charging station j ∈ J . To capture
station placement strategy, we introduce a binary variable
xj , where xj = 1 represents that candidate location j is
selected for building station and xj = 0 otherwise. The
station placement strategy can be further given by the vector

X = [x1, x2, ..., xJ ]. Accordingly, the set of selected charging
stations can be characterized by L = {j|xj = 1, j ∈ J } with
L = |L|. Suppose each charging station j is equipped with rj
charging spots. In view of the dynamics of system condition
and charging demand, we are inspired to characterize the
charging process of each station as M/M/r queueing system
[15]–[16]. The overall capacity of the system can be given by
the vector R = [r1, r2, ..., rj ].

Figure 1 illustrates the typical fast charging system, where
service region G is divided into six demand zones. The
provider selects three candidate locations to build charging
stations. The EV user demand in each zone i generates from
the center of zone i and gets charged at nearby stations. Each
charging station is modeled as M/M/r queueing system,
where r is the number of charging spots.

B. Charging Demand Model

1) Distance preference: We first consider the elastic de-
mand with respect to the driving distance to station. Denote
Θ(dij) ∈ [0, 1] as preference of EV charging demand to
distance. Following the location science [17]–[18], we define
distance preference function as monotone decreasing function
of distance to the station, i.e.,

Θ(dij) =
1

(1 + dij)αi
, αi > 0, (1)

where αi is the distance preference level of EV users in zone
i. Without loss of generality, we suppose all users share the
same distance preference level, i.e., αi = α for i ∈ I.

2) Assignment strategy: We introduce a binary variable
S(i, j), where S(i, j) = 1 represents that EV users in
zone i are assigned to charging station j and S(i, j) = 0
otherwise. It should be mentioned that the binary variable
S(i, j) determines indivisible charging demand in a zone, i.e.
EV users in zone i must be assigned to the same station. This
assumption has been widely adopted in existing researches
[19]–[20]. Although we only show the case for indivisible
charging demand, our approach can also apply to divisible
demand case by dividing a zone into smaller zones.

Inspired by [19], we assume that the EV users in zone i are
always assigned to the nearest charging station j ∈ L, i.e.,

S(i, j) =

{
1, j = minj∈L dij
0, otherwise. (2)

The arrival demand rate from other zones to station j can
be characterized as

Λmax
j =

∑
i∈I

λmax
i S(i, j)Θ(dij), j ∈ J . (3)

3) Waiting time preference: For any fast charging station,
the waiting time is another important factor that affects EV
users charging willingness for it. It’s obvious that serious
congestion will push users away from the station.

Denote Wj as the except waiting time in station j and
Ψ(Wj) ∈ [0, 1] as the waiting time preference function.
Intuitively, Ψ(Wj) is monotonically decreasing with waiting
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time. Based on the above analysis, we are inspired to model
waiting time preference function as

Ψ(Wj) =
1

1 + βWj
, β > 0, j ∈ L, (4)

where β represents the waiting time preference level.
Under waiting time function, the serving demand rate in

station j can be described as
Λj = Λmax

j Ψ(Wj), j ∈ L (5)
4) M/M/r queueing system: We consider M/M/r queue-

ing system for each fast charging station, where each charging
spot has an exponential serving rate µj . We suppose the charg-
ing spot serving rates in all stations are identical. Without loss
of generality, we use µ instead of µj . Denote ρj = Λj/µrj
as the utilization rate with ρj < 1. According to [20], the
probability that all charging spots are busy is denoted by

PQ(Λj , rj) =
(rjpj)

rj

(1− ρj)rj !

(
(rjρj)

rj

(1− ρj)rj !
+

rj−1∑
k=1

(rjρj)
k

k!

)−1

,

(6)
On the basis of this, we obtain the average queueing time

in station j, i.e.,

Tqueue(Λj , rj) =
PQ(Λj , rj)

Λj(1− ρj)
ρj , j ∈ L. (7)

On the other hand, the average charging time can be
characterized as

Tcharge =
1

µ
. (8)

The excepted waiting time can thus be calculated as
Wj = ω(Λj , rj) = Tcharge + Tqueue(Λj , rj), j ∈ L. (9)

For any charging station j ∈ L, substituting Eqn. (9) into
Eqn. (5), we have

Λj = Λmax
j Ω(Λj , rj), j ∈ L. (10)

Eqn.(10) is, in essence, a fixed-point equation . For any
charging station, long waiting time will keep potential EV
users away from it, which in turn will reduce its waiting time
in the future due to the decreased arrival rate.

5) Waiting time constraint: To guarantee the quality of
charging services, the expected waiting time satisfies

Wj ≤ ϕ, j ∈ L, (11)
where ϕ is the service level determined by the provider.

C. Problem Formulation

1) Revenue: In this paper, we assume that the unit charging
service price p is identical for all EV users. Consider any time
interval t, the revenue of station j can be described as

Uj = t× p×B × (SoCd − SoCa)× Λj , j ∈ L. (12)
where B is the capacity of EV battery, SoCa is arrival state
of charge and SoCd is departure state of charge.

2) Cost: Providing charging service for EV users will
inevitably incur operation cost Cspot, which is proportional
to the capacity of charging station rj . In addition, there also
exists the fixed cost denoted by Cb

j , mainly including nec-
essary energy cost, infrastructure cost, etc. Thus, the overall
cost of station j can be described as

Cj = xj(rjCspot + Cb
j ), j ∈ L. (13)

3) Profit: The profit of charging station j can be defined
as the difference between revenue and cost, i.e.,

fj = Uj − Cj , j ∈ L. (14)
4) FCS placement with elastic demand problem: This

paper aims to determine the optimal location and capacity
of charging stations to maximize the overall system profit.

P1 : Max
xj ,rj

ftotal =
∑
j∈L

fj (15)

s.t. Eqn.(2), (16)
xj ∈ {0, 1},∀j ∈ J , (17)

rj ≥
Λj

µ
xj ,∀j ∈ J , (18)

rj ≤ rmax
j xj , integer,∀j ∈ J , (19)

Λj = Λmax
j Ω(Λj , rj),∀j ∈ L, (20)

Wj ≤ ϕ, ∀j ∈ L. (21)
Constraint (16) describes the assignment strategy. Con-

straint (18) ensures the stability of the charging queue, where
rmax also reflects the grid security requirements. Constraint
(20) captures the fixed-point equation with respect to the serv-
ing demand rate Λj . Constraint (21) specifies the maximum
waiting time requirements.

III. OPTIMAL LOCATIONS AND CAPACITIES FOR FCS

In this section, we further formulate P1 as a bi-level
problem, where the upper level copes with placement issue of
charging stations and the lower level determines the optimal
capacity of each charging station.

A. Optimal Capacity of Each Fast Charging Station

As for the lower-level problem, we first analyze the suffi-
cient condition for the existence of optimal solution. After
that, we propose a searching algorithm based on Newton-
Raphson method to find optimal station capacity.

We assume that the provider has determined the optimal
location of fast charging stations, i.e. assignment strategy
S(i, j) is fixed. Recall the arrival demand rate Λmax

j , which
is given as well. In this case, the charging demand loss rate
for each station is only affected by its congestion state. The
optimal capacity for each station j ∈ L can thus be determined
by solving the following problem

P2 : Max
rj

fj (22)

s.t. rj ≥
Λj

µ
, (23)

rj ≤ rmax
j , integer, (24)

Λj = Λmax
j Ω(Λj , rj), (25)

Wj ≤ ϕ. (26)

Theorem 1. For any rj , Λmax
j ≥ 0, the fixed-point equation

Λj = Λmax
j Ω(Λj , rj) has and only has one solution Λj when

Λj ∈ [0, rjµ]. This solution corresponds to the supply-demand
equilibrium.
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Proof. According to Eqn. (6), we have

1

PQ(Λj , rj)
= 1 + (1− ρj)

rj−1∑
k=0

(rjρj)
k−rj

r
′

j !

k!

= 1 +

rj∑
t=1

(1− ρj)(ρj)
−t rj !

(rj − t)!(rj)t
,

(27)

When ρj ∈ [0, 1], and PQ(Λj , rj) monotonously increases
with ρj . Recall that ρj = Λj/µrj , where µ and rj are
constants. Hence we can regard PQ(Λj , rj) as PQ(Λj), which
monotonously increases with Λj .

We rewrite Eqn. (9) as

W (Λj) =
1

µ
+

1

rjµ− Λj
PQ(Λj , µ, rj). (28)

Since 1/(rjµ − Λj) monotonously increases with Λj ,
W (Λj) increases with Λj . Taking into account the fact
that congestion preference function Ψ(Wj) increasing with
waiting time, Ω(Λj , rj) is decreasing with Λj .

According to the fixed-point equation Eqn. (25), let
F (Λj) = Λj − Λmax

j Ω(Λj , rj).
On one hand, we have
lim

Λj→0
F (Λj) = lim

Λj→0
Λj − Λmax

j Ω(Λj , rj) = −Λmax
j < 0.

On the other hand, we have
lim

Λj→rjµ
F (Λj) = lim

Λj→rjµ
Λj − Λmax

j Ω(Λj , rj) = rjµ > 0.

Since F (Λj) increases with Λj , F (Λj) = 0 has and only
has one root when Λj ∈ [0, rjµ].

Theorem 2. There exists an optimal solution r∗j to P2 if
max{rwj ,

Λj

µ } ≤ rmax
j , where rwj = min{rj |ω(Λmax

j , rj) ≤
ϕ}.

Proof. Note that for rj ≥ rwj , the waiting time constraint is
satisfied because ω(Λj , rj) ≤ ω(Λmax

j , rj) ≤ ϕ. On the other
hand, the stability of charging queue is ensured for rj ≥ Λj

µ .
Thus, if the upper bound of capacity rmax

j is greater than
max{rwj ,

Λj

µ }, the feasibility of P2 is guaranteed.

Based on the above analysis, the fixed-point equation Eqn.
(25) can be solved naturally. We adopt Newton-Raphson
method [21] to compute the numerical solution of Eqn. (25).
In particular, Newton-Raphson method can get accurate result
for the fixed-point equation Eqn. (25). It iterates as follows
and finally converges when |Λk+1

j − Λk
j | < ϵ

Λk+1
j = Λk

j − (
dF

dΛj
)−1F (Λk

j ), (29)

where ϵ is small constant. The derivative can be estimated by
the neighborhood values, where δ is small constant

Λk+1
j = Λk

j −(
F (Λk

j + δ)− F (Λk
j − δ)

2δ
)−1F (Λk

j +δ). (30)

Given any station capacity rj , we can obtain the profit fj
and serving demand rate Λj according to Eqn. (30). Actually,
the maximal profit f∗

j and corresponding station capacity r∗j
are optimal solutions to P2.

From Algorithm 1, we can easily observe that for any
station j, the maximal profit f∗

j and optimal capacity r∗j

depend on the arrival demand rate Λmax
j . Thus, we build two

searching tables with respect to (Λmax
j , f∗

j ) and (Λmax
j , r∗j )

during the preprocessing stage. After that, the optimal capacity
problem P2 can be solved via a simple table lookup.

Algorithm 1: Charging Station Optimal Capacity Algo-
rithm

Input: rmax
j ,ϕj , λmax

i , µ, t, p, B, Sodd, Soda, Cspot, Cb
j

Output: f∗
j , r∗j , Λ∗

j

1 for rj ∈ [
Λj

µ , rmax] do
2 Determine the station j’s serving demand rate Λj by

solving Eqn. (25) and compute waiting time Wj ;
3 if Wj ≤ ϕ then
4 Determine profit of station j;
5 Update the maximal profit f∗

j , Λ∗
j and r∗j ;

B. Optimal Locations of Fast Charging Stations

In this part, we analyze the upper level problem of P1. Fig.
2 illustrates the main challenge of the upper level problem.
To serve EV users’ charging demand from 4 demand zones
(Z1, Z2, Z3, Z4) with different maximum charging demand
rates λmax

i (i = 1, 2, 3, 4), the provider selects two candidate
locations (S2, S3) to build charging stations. The distances
between demand zones and charging stations are depicted in
this figure. Each zone will be assigned to one closer station.
Taking into account demand loss with respect to driving
distance and station congestion, we obtain serving demand
rates (Λ2,Λ3) and profit of stations (f2,f3) by Algorithm 1.
The challenge is that we will get different ftotal if choosing
different station locations. In fact, there are 2J possible
scenarios. Obviously, the exhaustive method no longer apply
for this problem.

Fig. 2. An Example of Upper Level Problem

To this end, we propose an ascent heuristic algorithm to
solve the upper level problem, as shown in Algorithm 2. In
order to determine the optimal number of selected charging
stations, all possible selected station numbers need to be
examined. For each selected station number L ∈ [1, J ], we
first choose L station locations from J as the initial set L
(Lines 2-5), and exchange the remaining elements of J with
one of L in turn where the new L that provides the largest
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profit will be selected. Repeat this process until profit does
not change (Lines 6-16).

Algorithm 2: Ascent Heuristic Algorithm
Input: the number of iteration iter
Output: location vector X, capacity vector R, profit

ftotal
1 for L ∈ [1, J ] do
2 Randomly choose L station locations from J as the

initial set L;
3 Unselected charging station set T = J − L;
4 Calculate initial profit fL,0

total by Algorithm 1;
5 Set fL

dif ← 1, i← 0;
6 while fL

dif > 0 do
7 i← i+ 1;
8 Randomly choose l ∈ L;
9 Exchange l with every t ∈ T and calculate the

profit, X, R by Algorithm 1;
10 Find the maximal profit fL,i

total, X, and R;
11 Update L;
12 if i > iter then
13 fL

dif ← fL,i
total − fL,i−iter

total ;

14 fL
total ← fL,i

total;

15 Find the maximal profit ftotal = max
L

fL
total, X and R;

IV. SIMULATION RESULTS

A. Setup

Divide the service region of interest into 80 demand zones.
For each zone i, there exists one stream of Poisson charging
demand rate λmax

i randomly generated from the interval
[80, 95]. Without loss of generality, the candidate charging
station location set J coincides with demand zones set I. To
facilitate simulation, the EV type is captured by Nissan Leaf
PEV [22] which has 24 kWh battery capacity. Assume that
the arriving SoC (SoCa) is 0 and the departure SoC (SoCd)
is 100%. According to [23], each charging spot in the station
can serve three EV users in an hour. We set Cspot and Cb

j as
$23500 and $163000 [22].

To demonstrate the performance of our approach, we com-
pare the proposed algorithm with two baseline methods.

• Uniform Distributed Capacity Algorithm (UDCA): UD-
CA assigns the same number of charging spots in dif-
ferent charging stations among lower level, while it is
similar to proposed algorithm in upper level.

• Random Location Algorithm (RLA): RLA randomly
chooses p candidate locations to build stations in the
upper level, while it is same as the proposed algorithm
in the lower level.

B. Performance

We compare the performance of proposed algorithm and
Exhaustive Search Method regarding to the system profit and

runtime. We randomly choose J zones (J from 16 to 24)
from 80 zones as the candidate charging stations. From Fig.
3, we observe that as system scale increases, the runtime
of Exhaustive Search Method increases exponentially. The
proposed algorithm can achieve an approximation of optimal
profit in a much more efficient way.

Figure 4 presents the system profit achieved in proposed
algorithm with varying charging station number. We observe
that the profit increases at first and goes down subsequently,
because the revenue from constructing a new station can
not compensate for the cost. We also illustrate the impact
of building cost on profit. The fixed cost Cb

j may be influ-
enced by government subsidies, building materials price or
others. When the fixed cost decreases, the total system profit
increases. Due to the decrease of fixed cost, the charging
service provider is motivated to build more charging stations.
Accordingly, the optimal charging station number which can
achieve the maximal profit increases as well.

Figure 5 presents the demand loss rate of proposed algo-
rithm with varying charging station number. With the increase
of charging station number, the demand loss rate first falls
quickly and slows down later due to the marginal effect.

We compare the system profit of the proposed algorithm
against baselines in Fig. 6. As the selected charging station
number increases, the proposed algorithm outperforms other
baselines. Fig. 7 illustrates the comparison in demand loss
rate. We observe that larger the selected charging station
number leads to lower demand loss rate. The proposed algo-
rithm can achieve lower demand loss rate than RLA. UDCA
performs better than the proposed algorithm with the increase
of selected charging station number. However, in UDCA, the
charging spots in each charging station are under utilized,
making the profit of UDCA less than the proposed algorithm.

Figure 8 illustrates the optimal selected charging station
number and corresponding profit with varying EV user num-
ber (the sum of λmax

i in all zones). As EV user number
increases, the profit keeps going up. The proposed algorithm
performs better than other baselines.

V. CONCLUSION
This paper studies the FCS placement problem especially

with the elastic charging demand, which is pertaining to
distance preference and waiting time preference. We first
propose a fixed-point equation to illustrate the relationship
between serving demand rate and waiting time at station.
A heuristic algorithm is proposed to determine the optimal
location and capacity of charging stations. Simulation results
demonstrate the effectiveness of our approach in improving
system profit and reducing demand loss rate.
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Fig. 3. System profit and runtime with respect
to candidate charging station number

Fig. 4. System profit with respect to selected
charging station number

Fig. 5. Demand loss rate with respect to selec-
ted charging station number

Fig. 6. System profit with respect to selected
charging station number

Fig. 7. Demand loss rate with respect to selec-
ted charging station number

Fig. 8. System profit with respect to EV users
number
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