
AcBF: A Revocable Blockchain-based Identity
Management Enabling Low-Latency Authentication

Jianan Hong*S , Jiayue Zhou† , Yuqing Li‡ , Jia Cheng*, Cunqing Hua*
*School of Cyber Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

†SJTU-ParisTech Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
‡School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

SCorresponding author: hongjn@sjtu.edu.cn

Abstract—Blockchain-based identity brings in great evolution
due to its decentralized deployment, transparent and tamper-free
ledger. Specification groups of B5G/6G are exploring into integrate
the technology to future network systems, e.g., Internet of Things,
vehicular network, industrial communications. However, devices
in these systems often have storage constraints and unstable
channels, which necessitates lightweight node deployment. The
security issue arises: revoked identity can forge a legitimate
authentication, since the lightweight verifier does not maintain the
revocation transactions. This paper hence proposes AcBF, a novel
revocable identity management scheme, that enables extremely low
authentication latency by allowing the lightweight node to query
the certificate’s status locally. To realize this feature trustfully,
we design a revocation transaction based on accumulator-assisted
Bloom filter to minimize the storage of certificate status structure.
Secondly, we construct the blockchain protocol to ensure that no
revocation event slips on any lightweight ledger, even in an insecure
or unstable communication environment. In addition, different
from other revocation mechanisms, AcBF minimizes the impact
on valid users during the revocation process. Through security
and performance analysis, AcBF has shown strong security and
advantageous efficiency on both lightweight verifiers and certificate
owners, thus suits identity management systems with low-latency
constraints.

Index Terms—Blockchain identity, Revocation-aware authenti-
cation, Lightweight node, Low latency

I. INTRODUCTION

Blockchain has become increasingly popular in distributed
identity management [1] due to its security features, such
as append-only and non-tempering storage, decentralized
consensus, and reliable trust establishment. These features make
blockchain-based systems particularly well-suited for managing
trust across a large number of entities [2], [3], compared to
traditional identity systems like Public Key Infrastructure (PKI)
[4]. Therefore, the idea of blockchain-based identity can greatly
enhance the security of various network scenarios, including
Internet of Thing (IoT) [5], [6] and Internet of Vehicles (IoV)
[7], [8], where decentralized trust management is crucial.

Despite the advantages, the decentralized trust organization
introduced by blockchain also brings in many practical prob-
lems because of its certificate status query method. Typically,
in a blockchain-based identity system, a certificate’s status
(e.g., registered, illegal, or revoked) should be queried from
blockchain ledger, which is maintained by multiple nodes. Such
practice poses unique challenges to communication resource-
constrained scenarios. Firstly, the transaction query requires

several round trip time (RTT) between IoT devices (or vehicle)
and at least one blockchain node, which leads to unbearable
delay for latency-strict cases, e.g., safety notification message
of IoV. Additionally, the highly dynamic topology of these
network system makes the routing of query response complex.
Secondly, querying certificate status from just one node faces
a significant security bottleneck problem, while querying
multiple blockchain nodes exacerbates the first problem. What’s
worse, some network attacks will isolate the device from legal
blockchain nodes when the device needs to check a certificate.
It is intuitive but infeasible to let every device maintain the
entire ledger of blockchain, due to their limited resources,
especially storage.

In order to realize a low-latency and reliable authentication,
it is recommended to use lightweight blockchain nodes [9].
Rather than maintains the entire data, a lightweight node only
stores the block header of each block, thus helps it to check
transaction status locally with the method of simplified payment
verification (SPV). The property of lightweight node has made
blockchain a popular option for IoT, industrial environments,
etc.. However, before utilizing it to manage identities, several
important issues need to be taken into account. One critical
problem is revocation. Any revoked certificate (denoted as
𝑐𝑒𝑟𝑡𝐴) has two pieces of “valid” SPV auxiliary information on
verifier’s sight: one is related to a transaction for registering
𝑐𝑒𝑟𝑡𝐴, and the other is related to the revocation. When the
owner 𝑈𝐴 wants to authenticate to a lightweight verifier, it can
easily succeed in this forge, unless 𝑈𝐴 consciously submits
the SPV auxiliary information for revocation. Although some
blockchain-based identity management schemes have proposed
effective revocation method [10], [11], [12], [2], they do not
work for lightweight node, as they require the verifier to be
informed of all transactions in the ledger. Therefore, the biggest
challenge in achieving secure and low-latency authentication
is to establish a reliable and efficient lightweight node-aware
revocation mechanism.

Aiming at this challenge, this paper proposes a lightweight
node-support identity management scheme, whose authentica-
tion well resists the revoked users’ forging. The proposed work
uses a short Bloom filter to record the revoked certificates; and
additionally leverages a pairing-based accumulator to achieve
a precise certificate validity check, which is our proposed
mechanism (called AcBF, Accumulator-assisted Bloom filter)

https://orcid.org/0009-0000-1452-5252
https://orcid.org/0009-0007-1255-7390
https://orcid.org/0000-0003-0816-5777


to fix the false positive situation of pure Bloom filter with
slight storage and latency cost. Furthermore, according to the
expected system scale, this paper studies the parameter selection
of the bloom filter in our novel ACBF mechanism, in order to
minimize the system cost for the revocation event.

Different from related work, in order to realize a trust
revocation-informed block header update, even in an insecure
channel (e.g., the downlink channel is controlled by a malicious
party, or the node is attached to a dishonest full node to get
headers), we construct a new certificate management scheme
based on our AcBF mechanism. In the proposed scheme, with
our designed revocation transaction and small-volume header
structure, the lightweight verifier can be aware of the revocation
events with only the block header, thus achieves trust local
query to improve the efficiency and reliability.

In summary, this paper makes the following contributions:
1) We propose a lightweight on-chain certificate manage-

ment, where the authentication phase incurs negligible
overhead to validate the status of the certificate. Specially,
the certificate revocation list (CRL) is composed of an
accumulator-assisted Bloom filter, thus the filter length
is drastically shortened without false detection.

2) We enable trust and low-latency authentication by facili-
tating the deployment of lightweight nodes, which makes
them be aware of revocation event totally according to
the block header. Compared to the previous researches,
we further implemented the protocol and proposed the
revocation consensus solution, allowing the lightweight
node to query identity status locally and timely, in
addition significantly decreasing the latency.

3) We implement AcBF in our blockchain system, and
evaluate its performance in terms of computation and
storage overhead. Results show that AcBF informs every
revocation to lightweight nodes, and the overhead is
extremely small on both certificate owners and verifiers,
thus quite suit scenarios like IoT and IoV.

II. PRELIMINARIES

A. Bilinear Pairing and 𝑞-SDH Assumption

Let G1, G2 and G𝑇 be 3 groups of a same prime order 𝑝.
A pairing map 𝑒 : G1 ×G2 → G𝑇 satisfies:

∙ Bilinearity: for all (𝑥, 𝑦, 𝑔1, 𝑔2) ∈ Z2
𝑝 × G1 × G2,

𝑒(𝑔𝑥1 , 𝑔
𝑦
2 ) = 𝑒(𝑔1, 𝑔2)

𝑥𝑦;
∙ Non-degeneracy: if 𝑔1, 𝑔2 are generators of G1 and G2,

respectively, 𝑒(𝑔1, 𝑔2) generates G𝑇 ;
∙ Efficiency: It is efficient to compute 𝑒(𝑢, 𝑣) for all (𝑢, 𝑣) ∈

G1 ×G2.
According to the relationship of G1 and G2, there are three

types of pairings [13]. In Type 1, G1 = G2; In Type 2, G1 ̸=
G2, but there is a unidirectional homomorphism 𝜑 : G2 → G1;
An in Type 3, no PPT homomorphism algorithm exists between
the two groups. Overall speaking, Type 3 pairings are more
secure and efficient to map, which is used in this paper.

Consider the 𝑞-Strong Diffie-Hellman Problem (𝑞-SDH)
[14] as follows: given a tuple (𝑔1, 𝑔2, 𝑔

𝛾
2 , 𝑔

(𝛾2)
2 , . . . , 𝑔

(𝛾𝑞)
2 ) as

R

h0

h00 h01

h1

h10 h11

certA

If the relevant block is with height k,

ALoc = (k, 01) (1)

AUXA = (h00, h1) (2)

where 01 is the path of certA.

Fig. 1: Instance of merkle hash tree (MHT)

input, where 𝑔1 ∈ G1, 𝑔2 ∈ G2, and 𝛾 ∈ Z𝑝, outputs a pair
(𝑔

1/(𝛾+𝑥)
1 , 𝑥) where 𝑥 ∈ Z𝑝. We say that an algorithm 𝒜 has

advantage 𝜖 in solving 𝑞-SDH if it has probability 𝜖 to return
the valid pair.

Definition 1 (𝑞-SDH Assumption): No PPT algorithm 𝒜 has
a non-negligible advantage 𝜖 for 𝑞-SDH problem.

B. Bloom Filter

Bloom filter (or BF for short) is a space-efficient data
structure to record a set, in order to support membership queries
[15], [16]. BF is an array of 𝑚 boolean bits, whose initial
status is all zeros (denoted as 0𝑚). Another parameter 𝑘 is the
number of independent hashes, each of which maps a member
to a random bit of BF. The follows describe the functions of
BF, which will be used in the later context.

∙ 𝐵𝐹.𝐴𝑑𝑑(𝑥): To add an element 𝑥 to BF, it respectively
hashes 𝑥 with the 𝑘 hashes of BF, and sets each of the
mapped bit to 1.

∙ 𝐵𝐹.𝐶ℎ𝑒𝑐𝑘(𝑥): To query if 𝑥 has been added, it uses the
𝑘 hashes to map 𝑥 to a set of bits. If any of them is 0, it
returns False; otherwise, it returns True.

Especially, the 𝐵𝐹.𝐶ℎ𝑒𝑐𝑘() gives a False result with no
doubt; whereas the True result has the potential to happen
when the tested element has not been added, which means a
false positive situation.

C. Merkle Tree and Simplified Payment Verification (SPV)

Merkle hash tree [17] is essentially a binary tree where the
leaf node is labeled a hash of a data block, and the non-leaf
node is labeled with the hash of its child nodes. Such structure
allows efficient verification of any large data. As shown in Fig.
1, 𝑐𝑒𝑟𝑡𝐴 is labelled with the 2nd leaf of MHT, whose path is
“01” (0 for left child and 1 for the right).

Simplified payment Verification (SPV) is a method to check
if one data block is in a MHT, when the verifier only knows the
root node. To realize the verification, SPV requires the prover
side to offer necessary auxiliary information to the verifier,
which means the values of all sibling nodes from the hash of
proved data block to the root. Return to Fig. 1, the auxiliary
information of 𝑐𝑒𝑟𝑡𝐴 is as: 𝐴𝑈𝑋𝐴 = (ℎ00, ℎ1). Since each
one obtaining tuple (𝑅, 𝑐𝑒𝑟𝑡𝐴, 𝐴𝑈𝑋𝐴) can check if:

𝑅
?
= ℎ(ℎ(ℎ00, ℎ(𝑐𝑒𝑟𝑡𝐴)), ℎ1) (1)



rCA

iCA2iCA1 iCAn· · ·
CA Federation

Full nodes

verifier owner

revocation
service

AcBF System

1○params publish

4○revocation trans.

3○register trans.

Lightweight
Nodes

3○Cert issue;
4○Revoke

2○Ledger Init.;
5○Block update

6○authenticate

Fig. 2: Blockchain-based Identity System Architecture

III. SYSTEM AND SECURITY MODEL

As shown in Fig. 2, the proposed scheme works in a commu-
nication system with the following 3 kinds of entities: multiple
multiple certificate authorities (CAs), a set of blockchain full
nodes and many lightweight nodes. The follows describe each
of the entities.

A. Entity Description

1) Certificate Authorities: The CAs play the similar role
as those in traditional PKI systems, which are responsible
for issuing and revoking certificates for other entities. AcBF
sepereates multiple CAs into two categories: one revocation
CA (rCA) for certificate revocation, and multiple issuer CAs
(iCA) for issuing affairs.

The rCA should be responsible for parameter determina-
tion (as 1○ in Fig. 2), and revoke on-chain certificates by
4○submitting revocation transactions. Different from PKI, the
iCAs are not fully trusted, they issue on-chain certificates to
other entities by 3○submitting registration transactions.

It should be mentioned that, it is easy to fully decentralize
AcBF by realizing a threshold revocation among multiple rCAs.
There are exiting cryptographic solutions such as [18] to be
leveraged. For the clarity of introduction, this paper just uses
a one-rCA model.

2) Full Nodes: They are blockchain nodes storing all
blocks including transactions, and taking part in every-round
consensus. Our scheme does not depend on a specific consensus
method. Full nodes provide the following services: they gather
transactions from CAs to generate blocks, 5○ broadcast latest
block header to lightweight nodes, and 2○ help lightweight
node to initiate local ledger, when the lightweight nodes newly
enters the system just then.

3) Lightweight Nodes: They are resource constrained de-
vices from the perspective of storage and bandwidth. Thus they
only store block header for transaction validation. It keeps up
with the blockchain status by receiving newly generated blocks
from at least one reachable full nodes.

The lightweight nodes will communicate with each other,
thus should 6○ authenticate and convince the opponent that its

identity is valid. On this aspect, each lightweight node play
two roles: it is a verifier based on its lightweight ledger; and
also a certificate owner, that should maintain its authentication
parameters, including secret key and auxiliary information.

B. Security Assumption

In our system, the rCA, as a core entity, is totally trusted.
It securely maintains the security of secret keys and honestly
generates the revocation transactions. The iCAs are not strictly
honest; whereas, any entity can determine the certificate
credibility according to the trust level of relevant iCA. Luckily,
the blockchain is able to construct such trust well.

Any single full node may not be honest: it may try responding
spoofing transaction or hiding revocation if it can benefit.
However, the overall blockchain system is assumed safe and
live based on the consensus mechanism; it is hard to propagates
a non-consensus block header due to the assumption of selected
consensus mechanism. For instance, in Proof of Work (PoW),
malicious full nodes cannot succeed in puzzle solving game,
thus the lightweight node will easily detect false version when
it gets a longer fork.

The lightweight nodes cannot be trusted as certificate owners:
they try to forge a valid certificate status, even if it has
been revoked. In addition, malicious nodes will even forge a
full node to broadcast false header to others and control the
communication links. As a verifier, we assume that they will
try their best to update their local ledger to the correct and
latest version.

This paper makes further assumption about the commu-
nication links of lightweight node: 1) during long-lifetime
interaction, the link is unstable and insecure; 2) in its initializa-
tion phase, it has adequate resource to update its local ledger
to the latest and correct version, including other variables, e.g.,
Bloom filter and accumulator.

C. Design Goals

Based on the security assumptions, AcBF should achieve
the following properties as an efficient and secure scheme:

∙ Revocation-detectable authentication. Only user’s with
valid and non-revoked certificate can authenticate success-
fully, faced with lightweight node.

∙ Lightweight node-aware revocation. No revocation event
should be overlooked by a lightweight node, even in an
untrusted environment.

∙ Low-latency authentication. Latency should be strictly
restricted regardless of any situation.

∙ Slight impact. The above properties should be achieved
without bringing much burden to honest entities, e.g, rCA
and lightweight nodes.

IV. CONSTRUCTION OF ACBF

A. Revocation-Aware Block Format

The block structure in this paper is basically similar to that
of Bitcoin, except for the consideration of lightweight node
awareness. Firstly, the storage cost of block header should be
as short as possible with efficient query and sacrificing no



TABLE I: Block Header Format

Field Size Description
Height 4 bytes An incremental integer to identify this block

Previous Hash 28 bytes A hash of previous block
Flag 1 bit Indication of revocation
MHT 28 bytes Hash of all transactions in this block

Consensus variable Some method proving the validity of block

security feature; Secondly, the block header alone can prompt
every certificate revocation clearly.

Taking into account the two issues, we redesign the 1)
fields of block header, and 2) the tree structure of transactions.
The header is a fixed length data, such that an unstructured
storage can support fast addressing based on block height. The
necessary fields are depicted in Table I. Especially, as our
later implementation uses 224-bit hash function and curves,
the presented sizes of Previous hash and MHT (hash of merkle
hash tree) are 28 bytes. The Flag field is a main difference for
the second consideration: it is a boolean variable to notify the
holder whether revocation events occur in this block.

The consensus field depends on the used consensus method,
e.g., it is a nonce for puzzle-like consensus method like PoW,
or a digital signature for permission-based consensus.

All registered certificates (regarded as transactions) are
structured in merkle hash tree as Section II-C, whose hash of
root node is represented as 𝑅𝑐. There is also a slight difference
for revocation awareness: if there is no revocation, 𝑅𝑐 is just
the value of MHT (denoted as 𝑅𝑎); otherwise, MHT is assigned
the hash of 𝑅𝑐 and the signature of revocation transaction in
this block (denoted as 𝑅𝑥). For certificates registered in this
block, their SPV auxiliary information includes 𝑅𝑥 in such
case. For the clarity of description, Table II lists the main
notations and their meanings.

TABLE II: Notations

Notation Meaning
Δ Public value of the accumulator
BF Bloom Filter
R𝑥 Detailed revocation list containing every item
R A list of the gathered revocation in this round
𝑟𝑥 Content of a revocation transaction
𝑅𝑥 Signature of 𝑟𝑥 by rCA
𝑅𝑎 The value of MHT filed in the block
𝑅𝑐 The root hash of the certificates
𝑐𝑒𝑟𝑡𝑖 Certificate of user 𝑈𝑖

𝑖ℎ The hight of 𝑐𝑒𝑟𝑡𝑖’s registered block
𝑖𝑝 The path of 𝑐𝑒𝑟𝑡𝑖 in the MHT of the block

𝑖𝐿𝑜𝑐 𝑖𝐿𝑜𝑐 = (𝑖ℎ, 𝑖𝑝) is the location of 𝑐𝑒𝑟𝑡𝑖
𝐴𝑈𝑋𝑖 The auxiliary information of 𝑐𝑒𝑟𝑡𝑖 for MHT
𝑊𝑖 Witness of 𝑐𝑒𝑟𝑡𝑖 as an accumulator member
𝑇𝑖 A flag indicates whether 𝑈𝑖 should use accumulator

B. System Procedures

1) Initialization: The rCA initiates the system by generating
a bilinear tuple 𝑃𝑃 = {𝑝,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒} and two hash
functions 𝐻 : {0, 1}* → Z𝑝, 𝐻1 : {0, 1}* → G1. It selects its
master secret key 𝛾 ∈ Z𝑝, accumulator value Δ ∈𝑅 G1, and
parameters of Bloom filter (𝑚, 𝑘) as Section II-B, based on the
expected system scale as Section IV-C. It further generates an

empty revocation list R𝑥. The system parameters are published
as {︀

𝑃𝑃,Δ, 𝑌 = 𝑔𝛾2 , (𝑚, 𝑘), 𝐻,𝐻1

}︀
Blockchain full nodes are gathered by generating a genesis

block 𝐵0, whose header’s format follows Table I, with all-zeros
fields, except the consensus.

The iCAs are registered in the blockchain as Section IV-B2.
As a distributed system, iCA’s certificates should be registered
in self-sovereign manner, while our AcBF also supports issuing
by rCA, with its key pair (𝛾, 𝑌 ) under any signature algorithm.
Note that, iCA’s certificate status is queried like other entities’,
hence the later content will not specifically describe the iCA’s
status check in authentication phase.

Every lightweight node initiates its ledger by updating the
block headers from selected full nodes, like other lightweight
node-supported schemes. In addition, it updates the Bloom
filter 𝐵𝐹 and accumulator value Δ. As the full nodes are
not trusted, the 𝐵𝐹 and Δ are checked from the blocks with
revocation transactions as depicted in Section IV-B3.

2) Certificate Register: From an arbitrary trusted iCA, each
entity 𝑈𝑖 applies this phase to register an on-chain certificate
𝑐𝑒𝑟𝑡𝑖. The certificate in AcBF is basically similar to that in
X.509, except that AcBF does not need the globally unique
sequence number. Instead, AcBF uses its unique location
𝑖𝐿𝑜𝑐 = (𝑖ℎ, 𝑖𝑝) in blockchain to identify the certificate, where
𝑖ℎ is denoted as the height of registered block, and 𝑖𝑝 is its
path in MHT. Fig. 1 gives an instance of a certificate’s location.
𝑈𝑖 securely stores a secret key 𝑠𝑘𝑖, whose relevant public key

𝑝𝑘𝑖 is included in 𝑐𝑒𝑟𝑡𝑖. The 𝑈𝑖 should wait for this certificate
to be gathered with other transactions (including registration
and revocation transactions). After the consensus and broadcast
of the block as Section IV-B5, this phase is completed with 𝑈𝑖

getting its 𝑖𝐿𝑜𝑐 and the auxiliary information of MHT 𝐴𝑈𝑋𝑖.
It stores the following parameters locally:

(𝑐𝑒𝑟𝑡𝑖, 𝑖𝐿𝑜𝑐, 𝑠𝑘𝑖, 𝐴𝑈𝑋𝑖, 𝑇𝑖 = 0),

in which, 𝑇𝑖 = 0 means that 𝑈𝑖 initially can authenticate
directly, without the usage of accumulator.

3) Revocation: This phase consists of I) execution by rCA,
and II) reaction by other entities, especially the lightweight
nodes.

I) To execute revocation, rCA prepares a temporary revo-
cation list R to gather revocation request from legal iCAs
and certificate owners. After validation of each request, rCA
appends the location 𝑖𝐿𝑜𝑐 of the certificate to R until it invokes
Algorithm 1 to generate revocation transaction.

Especially, AcBF proposes an efficient accumulator method
based on [19], including the following three functions:

∙ Add makes the input value 𝑥𝑖 as the member of accumu-
lator, by outputting 𝑊𝑖 as its witness;

∙ Del removes the member 𝑥𝑖 by updating the value Δ;
∙ Update helps the other members 𝑥𝑖 to update their

witnesses with the input parameters.



Algorithm 1 Revocation Procedure of rCA

Require: R, R𝑥, 𝐵𝐹 and Δ
Output: Revocation Transaction (𝑟𝑥)

1: 𝐿← ∅
2: 𝐵𝐹𝑡𝑚𝑝 ← 0𝑚 ◁ Empty Bloom filter
3: for all 𝑥 ∈ R do
4: if 𝐵𝐹.𝐶ℎ𝑒𝑐𝑘(𝑥) then
5: Δ← 𝐷𝑒𝑙(Δ, 𝑥) ◁ as Algorithm 2
6: append (𝑥,Δ) to L
7: else
8: 𝐵𝐹𝑡𝑚𝑝.𝐴𝑑𝑑(𝑥)
9: end if

10: end for
11: 𝐵𝐹 ← 𝐵𝐹 ∨𝐵𝐹𝑡𝑚𝑝, R𝑥 ← R𝑥

⋃︀
R

return 𝑟𝑥← (𝐿,R)

Algorithm 2 Accumulator

Require: 𝛾,Δ, 𝑌 = 𝑔𝛾2
1: function ADD(Δ, 𝑥𝑖)

return 𝑊𝑖 ← Δ1/(𝑥𝑖+𝛾)

2: end function
3: function DEL(Δ, 𝑥𝑗)

return Δ← Δ1/(𝑥𝑗+𝛾)

4: end function
5: function UPDATE((𝑥𝑖,𝑊𝑖),Δ, 𝑥𝑗) ◁ 𝑥𝑗 is revoked

return 𝑊𝑖 ← (𝑊𝑖/Δ)1/(𝑥𝑗−𝑥𝑖)

6: end function
Note that, as 𝑥𝑖 in AcBF is a location format, the real input
uses 𝐻(𝑥𝑖) to replace 𝑥𝑖.

The detailed execution of these functions in this paper are
illustrated in Algorithm 2. Especially, the Update is correct as

𝑊𝑖 =(𝑊𝑖(𝑜𝑙𝑑)/Δ)1/(𝑥𝑗−𝑥𝑖)

=(Δ
1

𝑥𝑖+𝛾 − 1
𝑥𝑗+𝛾

𝑜𝑙𝑑 )1/(𝑥𝑗−𝑥𝑖) (2)

=(Δ
1

𝑥𝑗+𝛾

𝑜𝑙𝑑 )
1

𝑥𝑖+𝛾 = Δ1/(𝑥𝑖+𝛾)

where 𝑊𝑖(𝑜𝑙𝑑) and Δ𝑜𝑙𝑑 are the 𝑈𝑖’s valid witness and
accumulator value before 𝑥𝑗’s Delete function, respectively.

Then, rCA submits 𝑟𝑥 along with the signature 𝑅𝑥 to the
blockchain nodes, using its secret key 𝛾. AcBF does not restrict
the signature algorithm for revocation transactions, in fact any
short and secure method can be implemented, such as BLS
[20] signature. In BLS, the format of signature 𝑅𝑥 and its
verification are as (3) and (4), respectively.

𝜎 =𝐻1(𝑟𝑥)
𝛾 (3)

𝑒(𝜎, 𝑔2) =𝑒(𝐻1(𝑟𝑥), 𝑌 ) (4)

II) When a lightweight node 𝑈𝑖 invokes the revocation
reaction by the notification of Flag as Section IV-B5, it updates
the maintained BF and Δ with the revocation transaction 𝑟𝑥.
Parse 𝑟𝑥 as (𝐿,R) and executes Algorithm 3.

Algorithm 3 Revocation Reaction by Lightweight Node 𝑈𝑖

Require: 𝐵𝐹, 𝑖𝐿𝑜𝑐, 𝐿,R,𝑊𝑖 if 𝑇𝑖 = 1
Output: Δ

1: if 𝐿 ̸= ∅ then
2: Update Δ as the last tuple of 𝐿
3: end if
4: for all 𝑥 ∈ R do
5: 𝐵𝐹.𝐴𝑑𝑑(𝑥)
6: end for
7: if 𝑇𝑖 = 1 then
8: for all (𝑥𝑗 ,Δ𝑗) ∈ 𝐿 do
9: 𝑊𝑖 ← 𝑈𝑝𝑑𝑎𝑡𝑒((𝑖𝐿𝑜𝑐,𝑊𝑖),Δ𝑗) ◁ Line 5 of Alg. 2

10: end for
11: else if 𝐵𝐹.𝐶ℎ𝑒𝑐𝑘(𝑖𝐿𝑜𝑐) then
12: Invoke 𝑊𝑖 ← 𝐴𝑑𝑑(Δ, 𝑖𝐿𝑜𝑐) with rCA

return 𝑊𝑖 and 𝑇𝑖 ← 1
13: end if

Worth noting that, Line 12 of this algorithm focuses on the
case a legal user will be innocently checked as revoked one if
only with Bloom filter. Whereas, AcBF uses the accumulator
Δ to fix this problem. The rCA checks the follows: Firstly,
𝑈𝑖’s unique location is not in current R𝑥, such that it is a valid
user; Secondly, checks

𝐵𝐹.𝐶ℎ𝑒𝑐𝑘(𝑖𝐿𝑜𝑐) = 1,

which indicates that it is innocent in BF. If the above hold,
rCA responds the request; otherwise, it aborts.

4) Authentication: When 𝑈𝑖 needs to authenticate itself to
a lightweight verifier 𝑉 , it should sign a certain message or
a challenge with its 𝑠𝑘𝑖. This paper focuses on the issue that
how 𝑈𝑖 convinces 𝑉 that the relevant 𝑝𝑘𝑖 is indeed associated
with a valid on-chain certificate.

The certificate validation message includes the certificate
𝑐𝑒𝑟𝑡𝑖, its registered location 𝑖𝐿𝑜𝑐 (including 𝑖ℎ and 𝑖𝑝), the
auxiliary information of MHT 𝐴𝑈𝑋𝑖. If 𝑇𝑖 = 1, then the
witness 𝑊𝑖 is also in the message. The entire message is as

𝜎 =

(︂
𝑆𝑖𝑔(𝑚; 𝑠𝑘), 𝑐𝑒𝑟𝑡𝑖, 𝑖𝐿𝑜𝑐, 𝐴𝑈𝑋𝑖;𝑊𝑖 if 𝑇𝑖 = 1

)︂
Upon the recept of 𝜎, 𝑉 checks the follows:

∙ Existence: checks the tuple (𝑅𝑎, 𝑐𝑒𝑟𝑡𝑖, 𝐴𝑈𝑋𝑖) as (1),
where 𝑅𝑎 is the MHT field of the 𝑖ℎ-th block.

∙ Non-revocation: If 𝜎 does not contain 𝑊𝑖, checks

𝐵𝐹.𝐶ℎ𝑒𝑐𝑘(𝑖𝐿𝑜𝑐)
?
= 0;

Else, checks

𝑒(𝑊𝑖, 𝑔
𝐻(𝑖𝐿𝑜𝑐)
2 · 𝑌 )

?
= 𝑒(Δ, 𝑔2) (5)

∙ The signature is validated with public key in 𝑐𝑒𝑟𝑡𝑖.

If the above is all passed, 𝑉 is convinced that 𝑈𝑖 is valid.
Otherwise, the authentication is failure.



5) Block Generate and Broadcast: The blockchain full nodes
collect certificate register transactions from muliptle iCAs, and
at most one revocation one 𝑟𝑥 (with signgature 𝑅𝑥). According
to the selected consensus mechanism, the nodes organize the
transactions to MHT, according to Section IV-A, as well as
the block header encapsulation: the Flag field is set to “1” or
“0”, depending on whether this block contains an 𝑟𝑥. Let the
height of this newly generated block be ℎ𝑛.

After this block is generated, other full nodes check its
validity including the follows:

∙ Transactions: All transactions are valid, especially, 𝑅𝑥 is
the correct signature of 𝑟𝑥 with 𝑌 as Eq. (4).

∙ Structure: ℎ𝑛 = ℎ𝑐 + 1, where ℎ𝑐 is the largest height of
stored block; 𝑟𝑥 exists if Flag is “1”; and all hashes are
valid, including the value of Previous hash field.

After consensus, the block header, as well as 𝑟𝑥, 𝑅𝑥 and
𝑅𝑐 (the MHT root of only certificate registration transaction)
are transmitted to every lightweight node. Upon the recept of
the header, each lightweight node checks as:

1) If Flag is “1” without 𝑟𝑥, the lightweight node should
request 𝑟𝑥 as well as 𝑅𝑐. Otherwise, finishes the check.

2) Check 𝑅𝑥 is the signature of 𝑟𝑥 and 𝐻(𝑅𝑐, 𝑅𝑥)
?
= 𝑅𝑎,

which is the value of MHT field of this block.
Whether full or lightweight nodes, if the Flag is “1”, then

invokes Algorithm 3 with the verified 𝑟𝑥, to update local BF,
accumulator value Δ and optionally its witness. After that, the
lightweight node removes 𝑟𝑥, 𝑅𝑥 and 𝑅𝑐.

C. Parameter Determination for Bloom Filter

The length of Bloom filter in AcBF can be dramatically de-
creased compared with other schemes for revocation. Whereas,
a shorter filter length causes larger member size of the
cryptographic accumulator, and ultimately results in potentially
larger system overhead for the revocation. To optimize the
efficiency, this section gives a quantitative study of parameter
selection.

Let 𝑛, 𝛿 be the possible maximal number of registered and
revoked users, respectively. The remaining factor is system
effect of user revocation: when revocation is executed in
one consensus round, the expected affected users should be
limited to 𝜃, which can be measured as the member amount
of Accumulator Δ. The measurement is feasible as:

∙ Larger member amount in Δ causes larger probability that
a user to be revoked has already in Δ and more members
to update their witness.

∙ The probability that innocent users apply for accumulator
member affects the increase rate of 𝜃. Thus, 𝜃 also implies
the effect when revocation is executed just in Bloom filter.

Assume 𝑚 is the calculated hash length with 𝑘 hash functions
in the Bloom filter. With 𝛿 users already being revoked, the
probability can be measured as follows, that an legal user is
erroneously claimed as a revoked one:

Pr(1) ≃ (1− 𝑒−𝑘𝛿/𝑚)𝑘 (6)

The parameter 𝑘 can be individually optimized to minimize
Pr(1) as 𝑘 = 𝑚

𝛿 ln 2. Then, for 𝑛 valid users, the expected
affected amount (limited to 𝜃) is

𝜃 = 𝑛 · (1− 𝑒−𝑘𝛿/𝑚)𝑘 = 0.5
𝑚
𝛿 ln 2 · 𝑛 (7)

From (7), the parameters of Bloom filter are determined as

𝑚 =
ln 𝑛

𝜃 · 𝛿
(ln 2)2

≃ 2.08𝛿 · ln 𝑛

𝜃
(8)

𝑘 =⌊ln 𝑛

𝜃
/ ln 2⌉ ≃ ⌊1.44 ln 𝑛

𝜃
⌉ (9)

V. SECURITY ANALYSIS OF ACBF

A. Sound Authentication and Reliable Revocation

Theorem 1: The AcBF identity management achieves
sound and revocation-detectable user authentication for the
lightweight-node verifier.

Proof: A user without a registered certificate in public
ledger (even without a revoked identity) will not forge an
authentication due to the traditional certificate technique with
trust SPV method. Thus this proof mainly focuses on revoked
user. Formally, this theorem holds if a revoked user 𝒜 wins
the following challenges with negligible advantage.

1) With the knowledge of accumulator value Δ, as well as
any other user’s accumulator pair from authentication
message (𝑖𝐿𝑜𝑐,𝑊𝑖), 𝒜 tries to forge its witness.

2) When 𝒜 goes through a revocation based on member
delete in Δ, it tries to forge a new witness value for the
updated Δ.

3) When 𝒜 is revoked in block 𝑗, it tries to hide the
revocation fact during the broadcast of block header.

The first 2 challenges require a secure cryptographic accu-
mulator, and a strong blockchain protocol is in need for the
last challenge. Hence, the demonstration of Theorem 1 can be
derived from the following 2 lemmas.

Lemma 1.1: If 𝑞-SDH assumption holds, the revocation
method based on accumulator mechanism in Algorithm 2 is
sound against revoked identities.

Proof: The accumulator algorithm was basically proved
secure under 𝑞-SDH assumption in [19], whereas, AcBF makes
two modifications. Firstly, we remove the zero-knowledge
proof (ZKP) to accelerate the authentication phase as (5);
Secondly, Add function inserts an arbitrary member value
without changing the accumulator public value Δ.

In fact, non-ZKP authentication only helps the adversary
𝒜 to get the member secret (or the unique location 𝑖𝐿𝑜𝑐 in
AcBF) and its witness 𝑊𝑖, compared with standard algorithm.
Whereas, the 𝑖𝐿𝑜𝑐 is no longer secret in AcBF, and 𝒜 cannot
learn the information of the secret key 𝑠𝑘𝑖, which is relevant to
the public key in the transaction recorded in 𝑖𝐿𝑜𝑐. Thus, as long
as the consensus mechanism is safe (to ensure that every 𝑖𝐿𝑜𝑐

is unique between certificates), the additional information in
(5) brings no advantage to adversaries. On the other hand, we
analyze the advantage from cryptographic perspective. A tuple
(Δ, 𝑥,𝑊 = Δ1/(𝑥+𝛾)) can be reduced to (𝐵 = ℎ𝑥+𝛾 , 𝑥, ℎ),
which leaks no knowledge on 𝛾. The final mechanism is that we



use naturally unique location to replace the sequence number in
certificate. As a result, even the iCA is not totally trust, which
might issue certificates illegally, it cannot issue a certificate
with the same key index with another exiting one, since the
location’s uniqueness is inherent.

The second modification makes our accumulator be a stand
𝑞-SDH tuple: Given as system with a secret key 𝛾, and public
group elements Δ ∈ G1, (𝑔2, 𝑌 = 𝑔𝛾2 ) ∈ G2. The hash of
member value and its witness (𝐻(𝑖𝐿𝑜𝑐),𝑊𝑖) is identical to the
tuple (𝑥,Δ1/(𝑥+𝛾)).

The Member Del and Update function in Algorithm 2 is also
identical to key revocation in BBS signature [14]. An intuitive
description about the revocation capability is that the revoked
user 𝑈𝑗 should deal with the problem of zero denominator
to update its witness, as 𝑥𝑖 = 𝑥𝑗 . Formal reduction from
BBS signature to 𝑞-SDH assumption is given in [14]. As our
modified accumulator can be reduced to BBS, it is semantically
secure under 𝑞-SDH assumption.

Lemma 1.2: If the consensus protocol of the used blockchain
is safe, the lightweight node is aware of every revocation when
its ledger has been updated to the correct status.

Proof: When a certificate is successfully revoked in a
block (e.g., of height 𝑖), the Flag field of its header should be
True. As long as the consensus protocol has a strong safety
property, the lightweight node 𝑉 will not accept the 𝑖-th block
header with Flag field False.

With the above result, any revocation transaction should be
sent to the 𝑉 with the signature 𝑅𝑥 and auxiliary information
𝑅𝑐, where 𝑅𝑐 is the root value of all certificate registration
transactions in this block. No adversary can hide or modify
even one revocation item in this scenario due to the unforgeable
signature and hash strength, even by forging a full node or
controlling the downlink channel.

B. Accurate Revocation Policy

Note that every identity’s 𝑇𝑖 is a logical and locally stored
boolean parameter. In the whole procedure of AcBF, it is not
transferred in any cases. Analysis of revocation soundness
in Theorem 1 has already shown that authentication phase
will detect every certificates precisely without explicit 𝑇𝑖

indication. This section discusses if the rCA can accurately
deal with revocation algorithms. Here, accuracy means two
sides, completeness and low-impact. The first requires that
every revocation should be added in AcBF revocation data
structure; the second tries to bring in as least accumulator
members as possible.

On the one side, as long as rCA executes Algorithm 1
correctely, the revocation will executed completely. Since every
newly revoked certificate in R is added in the short Bloom filter.
We further check if every element in R that their BF check
has already been True with the old-version BF, which indicates
that the certificate may already be an accumulator member
(e.g, it was once an innocent user, and applied the member).
The member Add function requires an efficient check, such
that the relevant certificate’s further revocation will succeed by

just adding it to the Bloom filter. As a summary, we design a
lightweight algorithm for rCA to achieve a complete revocation.

On the other side, we use a temporary Bloom filter 𝐵𝐹𝑡𝑚𝑝

in Algorithm 1 to minimize the impact: the accumulator 𝐷𝑒𝑙
function is not invoked in the case, when the certificate is
checked false in current BF of other entities, but is checked
revoked in the rCA. The issue is intuitive, but without the
proposed revocation policy, it will be difficult or inefficient
to realize this goal (e.g. additionally maintain a list of all
accumulator members).

C. Lightweight Overhead

AcBF achieves this property on two aspects. Firstly, a
lightweight node requires no interaction with full nodes to
validate any certificate’s status, regardless of any cases, thus
achieves extremely low-latency authentication. Secondly, it
brings in slight impact on the system to maintain the reliable
revocation. This section mainly focuses from the security
perspective that AcBF achieves the trust authentication with
slight cost. Detailed overhead result is shown in Section VI.

On the first aspect, we use a short Bloom filter to record the
revocation list, while use accumulator to fix its false positive
situation: a wronged user applies a member of accumulator
with effective check, thus achives fast authentication with an
efficient member check as (5). Without this method, when a
user is checked as revoked, it requires the verifier to request
relevant transaction from trusted full nodes to judge the real
status. Furthermore, only wronged certificate needs additional
check based on accumulator, the average latency is still similar
to no-revocation method.

On the second aspect, all entities cost negligible burden
besides the basic block header update. 1) As a lightweight
verifier, it only needs a short BF structure and an accumulator
value to enable its validation ability. All revocation transactions
should be erased after the time when verifier has update its
BF and Δ. 2) As an identity owner, it basically maintains the
location and auxiliary information of its registered certificate.
3) Even as accumulator member, the Update function only
occurs when a user in accumulator is revoked, the probability
is quite small. From the sight of a uniformly selected identity,
its impact probability Pr(𝐸) faced with a random certificate
revocation can be expressed as

Pr(𝐸) = (𝜃/𝑛)2, (10)

where 𝜃 is the member size of current accumulator, and 𝑛 is
the amount of registered user.

In addition, compared with revocation mechanisms based
on smart contract or MHT, every lightweight node can update
its witness with the public revocation transactions locally, thus
costs little even in any low-probability matters.

VI. PERFORMANCE EVALUATION

We implement AcBF and other compared schemes in C++
program with PBC library 0.5.14. The pairing and elliptic
curves are MNT224 and SECP224r1, respectively. Bloom filter
is realized with bitarray structure in Python 3.11.3. The CAs



TABLE III: Performance Comparison with Related Schemes

Scheme Lightweight Revocable Revocatin Additional Revocation Impact on Issues faced with
node supp. mechanism method Verifier Owner System lightweight node

CertChain [2] ✗ ✓ Bloom Filter n/a heavy no medium latency even with large BF
CertLedger [21] ✗ ✓ MHT n/a heavy heavy heavy any affair affects system
ScalaCert [10] ✗ ✓ Chameleon

Hash

active check medium medium medium revoked trans. has “valid” SPV
PROCESS [22] ✗ ✓ CGBF medium medium medium ditto
Jia et al. [12] ✗ ✓ Accumulator medium medium medium ditto
Yu et al.[23] ✗ ✓ Accumulator n/a light heavy medium any revocation triggers update
SmartDID [9] ✓ ✗ n/a n/a n/a n/a
Proposed ✓ ✓ AcBF Flag light light light short BF & 1× G1

0 100 200 300 400 500
Authentication Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

10.0 12.5 15.0
0.998

1.000

CH-based[10, 22]
Certchain[3]
Yu[23]
CertLedger[21]
AcBF

Fig. 3: CDF of Authentication Latency

are built on Ubuntu 20.04 platform by PCs with 2.5GHz Intel
Core i7-11700, and other entities are built in Raspberry Pi
platforms. The blockchain application is realized with Flask
framework to realize network interactions, which is based on
a public repository in [24]. Lightweight nodes communicate
with each other by a one-hop WiFi channel, while full nodes
connect distinct AS from the lightweight ones. The registered
certificates in each block are as Poisson distribution with
parameter 𝜆 = 5, 000, while the revocation is the same
distribution with 𝜆 = 500. We execute the system for 100
rounds to get the experiment results.

We briefly compare some representative work as shown in
Table III in terms of critical factors for identity management.
The detailed analysis are proposed in our later content. Worth
noting that, we tried our best to enhance the compared schemes
to support lightweight nodes in our later evaluations.

A. Authentication Latency

The latency measures the duration from the time a verifier
gets the authentication message to the time it completes the
verification. For all schemes in comparison, we use ECDSA to
model 𝑆𝑖𝑔(𝑚; 𝑠𝑘). The cumulative distributions of verification
time for all 500,000 certificates are depicted in Fig. 3.

Certledger [21] achieves the shortest authentication latency:
it manages all legitimate certificates in MHT, thus only needs
log 𝑛 hashes to check each certificate. All Chameleon hash
(CH-based) schemes [10], [22] need the largest latency, since
all revoked certificates still have “valid” SPV information, it

requires the lightweight node to rely on reliable full nodes to
judge the certificate status.

The accumulator method helps [23] achieve low latency. It
should be mentioned that in [23], the latency should be larger
since it requires zero-knowledge proofs for member validation.
By using Bloom filter, CertChain [2] achieves high efficiency
for most of time, but requires unbearable round trip time with
full nodes in the false positive situation.

The proposed AcBF needs less than 1 ms in most of the
cases (90%); in other cases, the accumulator member check
in (5) requires about 4 ms on average, even the worst case
will be finished in 12 ms. Considering the average and worst
cases, AcBF shows its significant advantage. Especially, the
worst-case latency well suits many low-latency environments,
e.g., IoV.

B. Storage on Lightweight Verifiers

We compare the storage cost on verifier’s side, where the
ledger volume is not included in the measurement. Since
the CH-based systems [10] do not require data structure for
revocation lists, they achieve the best performance in this term,
although the CH-based mechanism cannot support lightweight
node. CertLedger [21] and Yu et al. [23] only needs a MHT
root hash and accumulator public value, respectively. Thus,
we only compare AcBF with Bloom filter-based schemes [25],
[22]. Fig 4 shows the storage cost versus expected revocation
numbers.

In AcBF, the overhead includes 𝑚-bit bloom filter and a
group element for accumulator value Δ; while the benchmarks
only need a Bloom filter, which should be much large than
that in AcBF. Strictly, the storage cannot be compared, as in
Certleger, false positive situation should be in a negligible
probability, such that BF is suggest to be over 400 kB in [25].
We just make the Bloom filter’s tolerated error probability be
0.01% and 0.05%. For AcBF, the maximal affected user is set
as 𝜃/𝑛 = 0.1 and 0.2.

Fig. 4 shows that AcBF only needs very little storage to
maintain the short BF and accumulator value (less than 20 kB).
It is a very lightweight cost compared with direct Bloom filter. It
should be mentioned that Certchain uses DCBF (double Bloom
filter, with every entry being an integer) for user management,
which costs much larger cost. What is more, as the related
work cannot bear the false positive situation, the parameter
in this comparison is not adequate. Differently, AcBF designs



10000 20000 30000 40000 50000
Expectation of Revoked Certificates

0

20

40

60

80

100

120

St
or

ag
e 

O
ve

rh
ea

d 
(k

B
)

AcBF (ratio = 0.1)
AcBF (ratio = 0.2)
BF (allowed error = 0.01%)
BF (allowed error = 0.05%)

Fig. 4: Storage on Verifier for Revocation

CH-based[10, 22] Yu[23] CertLedger[21] AcBF
0

100

200

300

400

Ti
m

e 
C

os
t (

m
s)

(a) Time Cost for 1-Round

20 40 60 80 100
Block Height

0.00

1.00

2.00

3.00

4.00

5.00

N
um

be
r

×104

AcBF for update
AcBF for Add
Yu[23]
CH-based[10, 22]

(b) Affected Number During Lifetime

Fig. 5: Evaluation Result on Owners’ Reaction for Revocation

an efficient mechanism for this issue, thus the parameter is
feasible, according to our former analysis.

C. Burden on Certificate Owner

It seems that AcBF shows the most significant advantage.
Since the entity does not execute any task to maintain the
legality of its certificate extremely high probability. Fig. 5
displays our measurement.

As shown in Fig 5a, schemes in [10], [21], [22] require full
nodes to update their auxiliary information, thus require more
time than other schemes. Especially, CH-based schemes require
users in the certain blocks to undertake this burden, while in
CertLedger [21], the MHT tree organizes all users, thus has the
worst performance. Yu et al. [23]’s scheme achieves very short
overhead since the update mechanism for accumulator only
needs globally same parameters in the revocation transaction.

AcBF has even slighter burden since the accumulator member
is only 10% of the user, which means accumulator update
function occurs only with probability of 10%. AcBF requires
interaction with rCA when it applies an accumulator member,
but the probability is more rare. Fig 5b corroborates our analysis.
As the work in [23] affects all certificate owners, while in [10],
[22], it only affects certificates registered in some blocks. AcBF
needs only few users to update its accumulator witness, and
the impact for accumulator add is negligible.

VII. RELATED WORKS

Blockchain is a promising technology to devise reliable and
decentralized certificate management. Fromknecht et al. [26]
proposed CertCoin to ensure identity retention with cryptocur-
rencies. Compared with the traditional technique like CA-based
PKI [4] and PGP method [27], the tamper free feature brought
from blockchain tackles the gap between decentralization and
certificate management. A totally decentralized model called
SSI (self-sovereign identity) [28] was designed by the Sovrin
Foundation in 2018. In SSI, users’ identities are registered
in blockchain by themselves. This idea has been realized in
industrial implementations such as hyperledger indy [29] and
uPort [30] attracted academic researches like SmartDID [9].
However, the full decentralized method does not suit practical
systems, since it is complex to deal with trust and revocation.

Another way that blockchain improves identity system is
to let the blockchain manage distributed CAs and certificate
revocation list (CRL). Wang et al. [31] realized a transparent
revocation by enabling OCSP (Online Certificate Status Pro-
tocol) on blockchain. Chen et al. [2] proposed CertChain, in
which a dependability-rank based consensus organized muliptle
CAs and uses double counting bloom filter (DCBF) to shorten
the volume of CRL. However, Luo et al. [10] pointed out
that DCBF still occupied too much storage resource on the
chain. Chameleon hash [32] enables redactable blockchain
such that revocation can be realized without CRL, thus many
schemes were proposed, such as [10], [12], [33], [22]. Note that
block redaction is difficult to make everyone aware, additional
mechanism shold be proposed, e.g., random freshness check
[10], RSA-based accumulator [12] and CGBF [22]. Much worse
problem is that redactable blockchain does not suit lightweight
node, as revoked certificate can still be “valid” since the block
header has not varied.

Due to the similar distributed architecture, blockchain-based
identity is promising to secure the future ad-hoc networks, such
as IoT and IoV [6], [8], [9], [23]. Especially, Yin et al. [9]
proposed SmartDID to support lightweight node deployment in
identity system. Whereas, we found that the above revocation
mechanisms could not work faced with a verifier only storing
block headers. It is difficult for a lightweight node to cache
and update CRL in time, especially when the downlink channel
is not trust. Due to similar reasons, mechanisms in [10], [12]
also failed. Some schemes leveraged MHT [21] or accumulator
[23] to maintain all legitimate certificates, which seems to
suit lightweight node since the verifier only needs to keep up
with the root node or accumulator value. However, they will
bring in unbearable burden on certificate owners’ side (which
are also thin devices), since it requires all owners to update
their auxiliary information for any member registration and
revocation.

VIII. CONCLUSION

In this paper, we have proposed AcBF to blockchain-based
identity system for lightweight nodes, which is the first that
realize certificate revocation with storage constrained ledger
as a verifier. By systematically investigating the problems



of trust authentication scenarios for lightweight nodes, we
constructed a security model for the identity system. With the
usage of accumulator-assist short Bloom filter and relevant
parameter selection mechanism, AcBF achieved the minimal
volume to maintain the revocation data, as well as local
verification regardless of any situations, thus offered a low-
latency authentication. Furthermore, a new ledger structure and
protocol has been proposed for lightweight node, which helps
the node to be aware of every revocation event. As long as the
consensus mechanism is safe, the above feature holds even in
a insecure or unstable communication environment. With this
feature, it checks every certificate’s status totally according to
its local ledger, thus achieves an extremely low authentication
latency. The security proof and the implementation results have
indicated that AcBF could achieved our expected properties.

ACKNOWLEDGEMENT

This work was supported by National Key Research and
Development Program of China (2022YFB2702300), Research
and Development Program of Department of Industry and
Information Technology in Xinjiang Autonomous District (No.
SA0304173) and Natural Science Foundation of China (Grant
Nos. 62202290, 62302343).

REFERENCES

[1] Z. Zhao and Y. Liu, “A blockchain based identity management system
considering reputation,” in Proceedings of the International Conference
on Information Systems and Computer Aided Education (ICISCAE), 2019,
pp. 32–36.

[2] J. Chen, S. Yao, Q. Yuan, K. He, S. Ji, and R. Du, “Certchain: Public
and efficient certificate audit based on blockchain for tls connections,”
in Proceedings of IEEE International Conference on Computer Commu-
nications, 2018, pp. 2060–2068.

[3] Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. Leung, “Blockchain-based
decentralized trust management in vehicular networks,” IEEE internet of
things journal, vol. 6, no. 2, pp. 1495–1505, 2018.

[4] D. Cooper, “Internet x.509 public key infrastructure certificate and
certificate revocation list (crl) profile,” RFC5280, 2008.

[5] C. Zhang, L. Zhu, and C. Xu, “BPAF: Blockchain-Enabled Reliable and
Privacy-Preserving Authentication for Fog-Based IoT Devices,” IEEE
Consumer Electronics Magazine, vol. 11, no. 2, pp. 88–96, 2022.

[6] J. Cui, N. Liu, Q. Zhang, D. He, C. Gu, and H. Zhong, “Efficient and
anonymous cross-domain authentication for iiot based on blockchain,”
IEEE Transactions on Network Science and Engineering, vol. 10, no. 2,
pp. 899–910, 2022.

[7] A. Lei, H. Cruickshank, Y. Cao, P. Asuquo, C. P. A. Ogah, and Z. Sun,
“Blockchain-based dynamic key management for heterogeneous intelligent
transportation systems,” IEEE Internet of Things Journal, vol. 4, no. 6,
pp. 1832–1843, 2017.

[8] M. Singh and S. Kim, “Branch based blockchain technology in intelligent
vehicle,” Computer Networks, vol. 145, pp. 219–231, 2018.

[9] J. Yin, Y. Xiao, Q. Pei, Y. Ju, L. Liu, M. Xiao, and C. Wu, “Smartdid:
a novel privacy-preserving identity based on blockchain for iot,” IEEE
Internet of Things Journal, vol. 10, no. 8, pp. 6718–6732, 2022.

[10] X. Luo, Z. Xu, K. Xue, Q. Jiang, R. Li, and D. Wei, “ScalaCert:
Scalability-oriented pki with redactable consortium blockchain enabled
“on-cert” certificate revocation,” in Proceedings of IEEE International
Conference on Distributed Computing Systems, 2022, pp. 1236–1246.

[11] Z. Wang, J. Lin, Q. Cai, Q. Wang, D. Zha, and J. Jing, “Blockchain-based
certificate transparency and revocation transparency,” IEEE Transactions
on Dependable and Secure Computing, vol. 19, no. 1, pp. 681–697,
2020.

[12] M. Jia, J. Chen, K. He, R. Du, L. Zheng, M. Lai, D. Wang, and F. Liu,
“Redactable blockchain from decentralized chameleon hash functions,”
IEEE Transactions on Information Forensics and Security, vol. 17, pp.
2771–2783, 2022.

[13] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for
cryptographers,” Discrete Applied Mathematics, vol. 156, no. 16, pp.
3113–3121, 2008, applications of Algebra to Cryptography.

[14] D. Boneh, X. Boyen, and H. Shacham, “Short Group Signatures,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 3152, pp. 41–55,
2004.

[15] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, jul 1970.

[16] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[17] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the theory and application of cryptographic
techniques. Springer, 1987, pp. 369–378.

[18] R. Gennaro, S. Goldfeder, and B. Ithurburn, “Fully distributed group
signatures,” 2019.

[19] L. Nguyen, “Accumulators from bilinear pairings and applications,”
in Proceedings of The Cryptographers’ Track at the RSA Conference.
Springer, 2005, pp. 275–292.

[20] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” Journal of cryptology, vol. 17, pp. 297–319, 2004.

[21] M. Y. Kubilay, M. S. Kiraz, and H. A. Mantar, “Certledger: A new pki
model with certificate transparency based on blockchain,” Computers &
Security, vol. 85, pp. 333–352, 2019.

[22] M. Jia, K. He, J. Chen, R. Du, W. Chen, Z. Tian, and S. Ji, “Process:
Privacy-preserving on-chain certificate status service,” in Proceedings of
IEEE International Conference on Computer Communications. IEEE,
2021, pp. 1–10.

[23] Y. Yu, Y. Zhao, Y. Li, X. Du, L. Wang, and M. Guizani, “Blockchain-
based anonymous authentication with selective revocation for smart
industrial applications,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 5, pp. 3290–3300, 2019.

[24] OpensourceBooks, “blockchain,” https://github.com/OpensourceBooks/
blockchain, 2018.

[25] J. Chen, S. Yao, Q. Yuan, K. He, S. Ji, and R. Du, “Certchain: Public
and efficient certificate audit based on blockchain for tls connections,”
in Proceedings of IEEE International Conference on Computer Commu-
nications, 2018, pp. 2060–2068.

[26] C. Fromknecht, D. Velicanu, and S. Yakoubov, “A decentralized public
key infrastructure with identity retention,” Cryptology ePrint Archive,
2014.

[27] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer, “Rfc 2440: openpgp
message format,” Internet Draft Rfc2440bis, 1998.

[28] S. Foundation, “Sovrin™: A Protocol and Token for Self- Sovereign
Identity and Decentralized Trust,” Sovrin, no. January, pp. 1–41, 2018.

[29] H. Indy. (2023) Hyperledger indy 1.0 documentation. [Online]. Available:
https://indy.readthedocs.io/en/latest/

[30] N. Naik and P. Jenkins, “uPort open-source identity management system:
An assessment of self-sovereign identity and user-centric data platform
built on blockchain,” in Proceedings of the IEEE International Symposium
on Systems Engineering. IEEE, 2020.

[31] Z. Wang, J. Lin, Q. Cai, Q. Wang, D. Zha, and J. Jing, “Blockchain-based
certificate transparency and revocation transparency,” IEEE Transactions
on Dependable and Secure Computing, vol. 19, no. 1, pp. 681–697,
2022.

[32] G. Ateniese, B. Magri, D. Venturi, and E. Andrade, “Redactable
blockchain–or–rewriting history in bitcoin and friends,” in Proceedings
of European Symposium on Security and Privacy (EuroS&P). IEEE,
2017, pp. 111–126.

[33] S. Xu, J. Ning, J. Ma, X. Huang, and R. H. Deng, “K-time modifiable and
epoch-based redactable blockchain,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 4507–4520, 2021.

https://github.com/OpensourceBooks/blockchain
https://github.com/OpensourceBooks/blockchain
https://indy.readthedocs.io/en/latest/

	Introduction
	Preliminaries
	Bilinear Pairing and q-SDH Assumption
	Bloom Filter
	Merkle Tree and Simplified Payment Verification (SPV)

	System and Security Model
	Entity Description
	Certificate Authorities
	Full Nodes
	Lightweight Nodes

	Security Assumption
	Design Goals

	Construction of AcBF
	Revocation-Aware Block Format
	System Procedures
	Initialization
	Certificate Register
	Revocation
	Authentication
	Block Generate and Broadcast

	Parameter Determination for Bloom Filter

	Security Analysis of AcBF
	Sound Authentication and Reliable Revocation
	Accurate Revocation Policy
	Lightweight Overhead

	Performance Evaluation
	Authentication Latency
	Storage on Lightweight Verifiers
	Burden on Certificate Owner

	Related Works
	Conclusion
	References

