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Abstract—Federated Learning (FL) is a secure distributed
learning paradigm, which enables potentially a large number
of devices to collaboratively train a global model based on
their local dataset. FL exhibits two distinctive features in job
requirement and client participation, where FL jobs may have
different training criteria, and clients possess diverse device
capabilities and data characteristics. In order to capture such
heterogeneities, this paper proposes a new FL framework, Hca,
which aims to strike a balance between the job completion time
and model accuracy. Specifically, Hca builds upon a number
of innovations in the following three phases: i) pre-estimation:
we first derive the optimal set of parameters used in training
in terms of the number of training rounds, the number of
iterations and the number of participating clients in each round;
ii) client selection: we design a novel device selection algorithm,
which selects the most effective clients for participation based
on both client historical contributions and data effectiveness; iii)
model aggregation: we improve the classic FedAvg algorithm by
integrating the model loss reduction in consecutive rounds as a
weighted factor into aggregation computation. To evaluate the
performance and effectiveness of Hca, we conduct theoretical
analysis and testbed experiments over an FL platform FAVOR.
Extensive results show that Hca can improve the job completion
time by up to 34% and the model accuracy by up to 9.1%, and
can reduce the number of communication rounds required in FL
by up to 75% compared with two state-of-the-art FL frameworks.

Index Terms—Federated Learning, Client Selection, Time and
Accuracy Balancing

I. INTRODUCTION

Federated learning (FL), a privacy-preserving distributed

learning paradigm, enables potentially a large number of

devices to collectively train a global machine learning (ML)

model using the devices’ own local dataset [1], [2]. With

FL, an server in a cloud is used to coordinate participating

clients synchronously in multiple communication rounds. In

each round, a small subset of these clients is selected to

train an ML model using their local data. After a number

of training iterations are performed, clients will send their

local model updates to the FL server, which aggregates these

updates using an aggregation algorithm (e.g., FedAvg [3])

to update the global model parameters and send them back

to clients. This process iterates until a pre-specified model
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accuracy or the maximum training time (i.e., job completion

time) is reached [4].

While the training process of FL is similar to that of

conventional ML, FL executions have distinctive features in

job requirements and client participation. Improving FL model

accuracy is generally achieved by increasing computational

loads, which consume a larger amount of energy and need

more time. But some FL jobs require making decisions in a

short time, such as Gboard - Google keyboard, which makes

typing suggestion while typing [5]. The trade-off between time

and accuracy brings new challenges and opportunities in FL

training [6], [7]. To start with, we need to properly select

three critical control parameters including the total number

of training rounds, the number of iterations and the number

of participating clients in each round [8], [9]. This turns

out to be challenging in that there exist intrinsic correlations

among these parameters, and their collective impacts on the

job completion time or model accuracy are largely unknown.

On the other hand, exhaustive search for the optimal values is

practically infeasible. Second, FL potentially involves a large

number of clients, each with heterogeneous device capability

and data characteristics. For instance, the clients with high

computing capability and more relevant datasets can contribute

more to the quality of the model training. Consequently, how

to select the most effective set of clients for participation

during each training round becomes critically important.

Existing works in FL have focused on improving model

accuracy [10] or reducing energy cost [11], usually with a

random client selection algorithm. Considerable efforts have

been made to improve the effectiveness of client selection [12].

However, they typically only consider device performances

such as local loss or bias, while ignoring a crucial factor -

the quality of the data. In FL, a major challenge is that data

distribution among clients is unbalanced and not independent

and identically distributed (non-IID). Irrelevant or even harm-

ful data can significantly affect the FL training performance.

Proper client selection can mitigate this problem. We will

further discuss this in detail in Sec. II. To comprehensively

capture the heterogeneity of FL, in this paper, we propose

a new FL framework, Hca, for optimizing the FL training

performance. First, we assign weighted indices to the model

loss and job completion time to capture the different job

training preferences. The value of the index is defined by FL

jobs. Minimizing the sum of two weighted factors can strike a

562

2022 IEEE 28th International Conference on Parallel and Distributed Systems (ICPADS)

978-1-6654-7315-6/23/$31.00 ©2023 IEEE 
DOI 10.1109/ICPADS56603.2022.00079

20
22

 IE
EE

 2
8t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 P
ar

al
le

l a
nd

 D
is

tri
bu

te
d 

Sy
st

em
s (

IC
PA

D
S)

 | 
97

8-
1-

66
54

-7
31

5-
6/

23
/$

31
.0

0 
©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
PA

D
S5

66
03

.2
02

2.
00

07
9

Authorized licensed use limited to: Wuhan University. Downloaded on April 02,2023 at 11:52:01 UTC from IEEE Xplore.  Restrictions apply. 



balance between job completion time and model accuracy in

the training process. Second, to characterize the heterogeneity

in device capability and data characteristics, we define two

criteria in the client selection process: historical effectiveness
which is related to the weighted index and captures the esti-

mated convergence rate; and data effectiveness, measuring the

matching degree between client’s dataset and the target job’s

dataset, as well as the similarity between two participating

clients’ datasets. The objective is to select the most effective

clients with higher values in these two criteria.

To strike a balance between job completion time and

model accuracy, we consider the FL training process in three

stages: i) pre-estimate stage, which aims to derive the three

control parameters in polynomial time; ii) client selection
stage, which focuses on selecting the most effective clients

based on historical and data effectiveness. This stage utilizes

the three control parameters obtained in the first stage to

enable faster and better FL training while satisfying job

preference; iii) model aggregation stage, which improves the

classic FedAvg aggregation algorithm to further enhance the

FL model training accuracy. The combined optimizations in

the three stages not only meet the basic requirements in job

completion time and model accuracy, but also maximize the

training performance. The problem turns out to be particularly

challenging from two aspects, i) neither the job completion

time nor the model loss presents an explicit expression related

to the three control parameters; ii) the client section problem is

a 0-1 quadratic program (QP), which is proven to be NP-hard.

In this context, we propose a new FL framework, Hca,

to solve the three-stage problem. We first reformulate the

trade-off objective in the pre-estimate stage into a function

capturing the three control parameters through analysis on the

upper bounds of the training time and model accuracy. The

reformulated problem can be solved by the block coordinate

decent (BCD) algorithm [13]. During the client section stage,

we first linearize the 0-1 QP into an integer linear program

(ILP). We then use a randomized pairwise rounding algorithm

to obtain the required integer solution. Finally, in the model

aggregation stage, we select most relevant local updates and

integrate the model loss reduction between consecutive rounds

as a weighted factor into the aggregation calculation, to further

enhance the FL model accuracy.

We conduct extensive experiments to evaluate the perfor-

mance of Hca. The experiments train a CNN model on three

common datasets over the FL platform FAVOR [14]. The

highlights of the results are: i) the weighted factor α plays a

trade-off between the time and accuracy requirements; ii) Hca
reduces the job completion time by up to 34% and improves

the model accuracy by up to 9.1% at the same time when

compared with FAIR [15] and FedAvg [3]; iii) Hca reduces

the number of training rounds required by up to 67% and 75%,

when compared to the above two benchmarks.

The rest of the paper is organized as follows. We present the

related work in Sec. II. We introduce system model in Sec. III

and describe the design of Hca in Sec. IV. We evaluate Hca
in Sec. V and conclude the paper in Sec. VI.

II. RELATED WORK

FL Framework Optimization. Since Mcmahan et al. [3]

proposed the first FL framework and demonstrated its ef-

fectiveness, many efforts have been devoted to improving

the performance of FL. Some works [16]–[18] investigated

the theoretical convergence guarantees in heterogeneous set-

tings, while others were proposed to improve the structure

of FL framework. Briggs et al. [19] proposed a hierarchical

clustering approach to categorize clients by the similarity of

their local updates. Wang et al. [20] designed a hierarchical

aggregation approach by clustering clients and explored the

optimal cluster structure with resource constraints. Wang et
al. [21] filtered out the irrelevant updates by ameliorating

aggregation method. Leroy et al. [22] designed an Adam-

based per-coordinate averaging strategy for global aggregation.

Wang et al. [9] proposed a control algorithm to minimize the

loss function under a given resource budget. Luo et al. [8]

analyzed how to optimally select the essential control variables

to minimize the total cost while ensuring convergence. None of

the existing approaches jointly considered the client selection

and heterogeneous requirements of different FL jobs. Our

proposal, Hca is different in that it aims to jointly optimize

the training time and model accuracy through proper selection

of training parameters and model aggregation.

FL Client Selection. Takayuki et al. [23] presented a

client selection method based on the hardware and wireless

resources. Ribero et al. [24] proposed a client selection strat-

egy by utilizing the progression of clients’ weights from an

Ornstein-Uhlenbeck process. Wang et al. [14] selected clients

by leveraging deep reinforcement learning (DRL) technique

to speed up convergence. Chen et al. [25] proposed a client

selection scheme by minimizing the variance of the stochastic

gradient. Deng et al. [15] constructed a quality-aware selection

scheme by learning quality estimation. Such client selection

strategies largely rely on the client performance such as

local losses or bias, while completely ignoring the effect

of clients’ data properties. Another relevant work considered

data property [26], and designed a method to select high-

quality clients and data samples. Different from all the above

works, Hca designs a comprehensive client selection criterion

by incorporating both client’s device performance and data

properties with proven theoretical guarantee.

III. SYSTEM MODEL

A. System Overview

Heterogeneous Job Preferences. We assume that an FL job

comes with its maximum completion time requirement C and

accuracy demand ε, where ε is the required difference between

the model loss and the minimum loss (which is determined

by the property of the loss function). As discussed, Hca, aims

to balance an FL job’s completion time and model accuracy

and selects the most efficient participating clients for model

aggregation, while satisfying two training requirements. Con-

sidering FL jobs have different preferences on the completion

time and model accuracy, we define a weight index α for a
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FL job, to capture the trade-off between the two values, where

α ∈ [0, 1]. The closer α is to 1, the higher value the FL job

puts on the accuracy than the completion time. α affects both

the control parameter estimation process before FL training

and the client selection process in each training round.

Training Process and Decision Overview. To effectively

achieve the unique requirement of time and accuracy trade-

off, we consider that a training process consists of three

stages. First, upon the arrival of an FL job, Hca computes

three control parameters based on the job preference and

requirements: i) K, the total number of training rounds; ii)

τ , the number of iterations in each round; and iii) M , the

number of participating clients per round. Second, in each

round, Hca evaluates the effectiveness of available clients

based on their device capabilities and data characteristics, and

selects the most effective clients from N available clients. Let

a set of binary variables {xk
i ∈ {0, 1}|i ∈ I

k, k ∈ K} denote

the selection, where I
k is the set of available clients in round

k. If client i is selected to participate in the training process

in round k, xk
i = 1, otherwise xk

i = 0. Third, Hca performs

model aggregation. Stage 2 and stage 3 are carried out under

the premise of the control parameters determined in stage 1.

The first two stages will be described in details in the next

two subsections.

B. Pre-estimation Stage

Problem Formulation. To achieve the trade-off between the

two preferences, a weight index α1 is introduced to merge

the two requirements. We formulate the control parameter

pre-estimation problem as an optimization problem whose

objective is to minimize the weighted completion time and

model loss while satisfying job training requirements. We call

this problem as PEP (Pre-estimation Problem). Let CK
tot be the

total training time after K rounds, and F (wK) be the model

loss after K rounds. F (w∗) is the minimum loss, which is a

fixed value. The PEP for each incoming job can be formulated

as follows:

P1: min
K,M,τ

(1− α)E[CK
tot] + αE[F (wK)] (1)

s.t. E[CK
tot] ≤ C, (1a)

E[F (wK)]− F (w∗) ≤ ε, (1b)

K,M, τ ∈ Z
+, (1c)

Constraint (1a) guarantees that the expected training time is

less than the time requirement. Constraint (1b) ensures that

the expected loss after training K rounds is less than the loss

requirement.

C. One-round Client Selection Stage

Selection Criteria. For each training round k, given the

collection of available clients I
k, Hca selects at least M clients

for this round to maximize the quality of the aggregated global

model. Hca evaluates the effectiveness of client i for the target

1Since completion time and model loss have different range of values, we
normalize two values in the same range, according to their actual values in
training, which will be further explained in Sec. V-A.

job from two aspects: i) historical effectiveness, which applies

to clients that have participated in the target job before. It

evaluates the effectiveness of each available client based on

staleness mechanism [27] using training time and quality from

previous training rounds. The weight parameter α is integrated

into this evaluation function to capture the heterogeneity of

job preference; and ii) data effectiveness, which measures the

quality and the fitness of client i’s dataset for the target job.

Data effectiveness includes the data relevance (γk
i ) between

client i and the target job, as well as the data similarity
(sk(i, j)) between the two participating clients i and j.

Historical Effectiveness. In particular, the historical effec-

tiveness of client i in round k (Uk
i ) is defined as:

Ûk
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αq̂ki

(1− α)Ĉk,i
tot

, Ĉk,i
tot �= 0, α �= 1

q̂ki Ĉk,i
tot �= 0, α = 1

−Ĉk,i
tot Ĉk,i

tot �= 0, α = 0

0, otherwise

(2)

where q̂ki and Ĉk,i
tot are the estimated utility and estimated

completion time in round k, both of which are estimated from

historical training information. Ûk
i is a concept similar to the

training speed, representing the estimated model quality per

unit of time. We multiply the weight factor α and (1 − α) in

front of q̂ki and Ĉk,i
tot , in order to meet the time and accuracy

trade-off. We use the reduction of the model loss to define the

accuracy factor in round t, i.e., qti = F (wt−1)− F (wt
i). So q̂ki

is defined as:

q̂ki =

⎧⎪⎨
⎪⎩

∑k−1
t=1 qtiβ

k−t∑k−1
t=1 βk−t

, ∃k, s.t. qki > 0

0, otherwise

(3)

Similarly, the estimated completion time of round k Ĉk,i
tot is

also obtained from the historical information:

Ĉk,i
tot =

⎧⎪⎨
⎪⎩

∑k−1
t=1 Ct,i

totβ
k−t∑k−1

t=1 βk−t
, ∃Ck,i

tot

0, otherwise

(4)

where Ct,i
tot is the completion time of round t.

Data Effectiveness – Relevance: Besides the historical

information, to avoid the negative effect of unbalanced and

non-IID data distribution on participating clients, we also

hope to obtain information from data as a selection criterion

under the premise of protecting privacy. First, we define the

relevance γk
i to measure the matching degree between client

i’s dataset and the target job’s dataset. To protect the privacy

of clients and the job, Hca adopts private set intersection (PSI)

protocol [28], which is a widely used lightweight security

protocol. Let Y k
i denote the set of client i ’s labels in round

k, and let Y denote the target labels. The dataset of client i in

round k is Dk
i . D

′k
i represents the dataset that overlaps with

the target labels, i.e., D
′k
i = {(x, y)|y ∈ Y k

i ∩Y }. We define γk
i

as follows:

γk
i =

|D′k
i |

|Dk
i |

, (5)
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Obviously, the larger γk
i is, the more suitable client i is for

the training.

Data Effectiveness – Similarity: Clients with similar data

appearing in the same training round may waste training

resources, as we want to get as much data information as

possible from the available clients for training. Therefore, we

use a privacy-preserving method to measure the data similarity

between clients, and select clients whose data information is

as unique as possible to participate in each training round.

Hca measures the similarity sk(i, j) of two clients’ datasets Di

and Dj by a privacy-preserving method [26]2. In particular,

client i locally generates content embedding vectors φk
i =

{φk
i,m|m ∈ [Sk

i ]}, where each embedding vector φk
i,m ∈ R

Lφ .

Then a projection matrix w ∈ R
lφ×Lφ is selected to encode

the Lφ-dimensional vector into lφ-dimensional vector h(φk
i,m),

where lφ < Lφ [29]. Each client computes the projection vector

h(φk
i,m) = sgn(w·φk

i,m), where sgn(·) denotes signum function.

Then the sketch of dataset Dk
i is Hk

i =
∑

m∈[Sk
i ] h(φ

k
i,m). To

protect the privacy of each sample, a randomized response

mechanism is applied to generate a noisy sketch Ĥk
i to

replace Hk
i . Given the noisy content sketch of each client,

the similarities between two clients’ datasets Dk
i and Dk

j is

defined as:

sk(i, j) =
Ĥk

i · Ĥk
j

|Ĥk
i ||Ĥk

j |
. (6)

If sk(i, j) is too large, the datasets of clients i and j are too

similar, hence the training efficiency by selecting these two

clients is low.

Problem Formulation. The goal in the second stage is to

maximize the quality of clients and the data diversity3 at the

beginning of round k.

P2: max
xk

N∑
i=1

Uk
i x

k
i −

∑
1≤i<j≤N

sk(i, j)xk
i x

k
j (7)

s.t.
M ≤

N∑
i=1

xk
i ≤ R, (7a)

Ĉk,i
totx

k
i ≤ C

K
, ∀i ∈ I

k
(7b)

γk
i x

k
i ≥ γ0, ∀i ∈ I

k
(7c)

xk
i ∈ {0, 1}, ∀i ∈ I

k
(7d)

Constraint (7a) indicates that in round K, the central server

selects at least M and at most R participating clients, where

R = min{2M, M+N
2
}. Since clients may drop during training,

more than M clients are selected before each round, and the

top M training models are selected for the current round’s

aggregation. Note that constraint (7b) ensures that the esti-

mated completion time does not exceed the average one-round

maximum completion time according to the estimation result

of P1. Constraint (7c) filters out mismatched clients by an

upper bound γ0.

2This method sketches each client’s dataset by a low-dimensional vector
based on JL-transformation [29] and protects the privacy of each sample using
a random response mechanism. The high efficiency and low computation cost
of this method has been proven in [26].

3Same as P1, two items in the objective function are normalized.

Challenges. Notice that P2 is a 0-1 quadratic programming

(QP). The heaviest k-subgraph problem (HSP) which is NP-

hard [30] can be reduced to P2 by ignoring constraints (7b)

and (7c).

IV. DESIGN OF Hca

A. Design Overview

Fig. 1: Architecture of Hca.

As shown in Fig. 1, Hca consists of three stages.

i. Pre-estimate stage. To meet the target job’s weighted

time and accuracy demand, we first rewrite P1 to a

complex non-convex optimization program P3 expressed

by three decision variables K, M and τ . Then we solve

P3 and obtain the value of K, M and τ by Alg. 1.

ii. Client selection stage. After determining the control

parameters, we design a multi-criteria client selection

scheme in each training round k. To tackle P2, we first

standardize and simplify it to P4. Then we perform a

reasonable linearization, and convert P4 to P5, in which

a 0-1 variable yk
ij is proposed to replace the quadratic

term xk
i x

k
j . For the linearized problem P5, we first relax

its integral constraints to get the fractional solution, and

then carefully design a theoretically guaranteed rounding

algorithm Alg. 2 to round the fractional solution to

the desired integer solution. We integrate the series of

methods into Alg. 3 as the client selection scheme.

iii. Model aggregation stage. We make some improvements

to the FL model aggregation. The aggregation first

selects top M most relevant local updates with current

global update. Then The accuracy factor qki is added to

the weight factor for the aggregation calculation. These

two steps are included in Alg. 4 as the FL aggregation

algorithm.

We next introduce three stages in Sec. IV-B, Sec. IV-C and

Sec. IV-D respectively.

B. Solving Pre-estimation Problem

The process of solving P1 has4 two steps:

i. Explore the specific mathematical expression of E[CK
tot]

and E[F (wK)] in P1, and rewrite P1 to a non-convex

4Due to the space limitation, the details of Sec. IV-B, the proofs for
all Lemmas and Theorems can be found in the technical report [31].
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optimization program P3 expressed by three decision

variables K, M and τ .

ii. Analyze the properties of P3 and give the value of K,

M and τ in Alg. 1.

C. Solving One-Round Client Selection Problem

Main Idea. The main idea is three-fold. The first step is the

preprocess step which standardizes and simplifies P2. Second,

we linearize the quadratic problem into a 0-1 integer linear

programming (ILP) by importing an auxiliary variable and

some constraints accordingly. Third, we relax the ILP into

an LP, and then adopt a carefully designed rounding method

to get the fractional solution. Finally, we obtain the integer

solution of P2.

Standardize and Simplify. Since we leverage cosine simi-

larity to calculate sk(i, j), we have sk(i, j) ∈ [−1, 1]. For the

computation convenience, we define s
′k(i, j) = 1 − sk(i, j).

We first filter out the clients that violate constraints (7b) and

(7c) to get a qualified client set, denoted as I
′k. We reindex

the available clients in I
′k and denote the largest index as N1.

This process is simple and fast in practice. After performing

the above two step, P2 is simplified to P4:

P4: max
xk

N1∑
i=1

Uk
i x

k
i +

∑
1≤i<j≤N1

s
′k(i, j)xk

i x
k
j (8)

s.t.
M ≤

N1∑
i=1

xk
i ≤ R, (8b)

xk
i ∈ {0, 1}, ∀i ∈ I

′k. (8c)

Linearization. P4 is still intractable because of the quadratic

objective function and the integral constraints. We leverage a

linearization technique which replaces the quadratic term xk
i x

k
j

by a new variable yk
ij and adds some constraints to express the

relationship between yk
ij and xk

i . The linearization of P4 is:

P5:
max
xk,yk

N1∑
i=1

Uk
i x

k
i +

∑
1≤i<j≤N1

s
′k(i, j)ykij (9)

s.t.
M ≤

N1∑
i=1

xk
i ≤ R, (9a)

ykij ≤ xk
i , ∀1 ≤ i < j ≤ N1, (9b)

yk
ij ≤ xk

j , ∀1 ≤ i < j ≤ N1, (9c)

yk
ij ≥ 0, ∀1 ≤ i < j ≤ N1, (9d)

xk
i ∈ {0, 1}, ∀i ∈ I

′k. (9e)

It’s obvious that P4 and P5 have the same optimal solution.

Relaxation and Rounding. Next we relax constraints (9d)

and (9e) to yk
ij ∈ [0, 1] and xk

i ∈ [0, 1], respectively. The relaxed

P5 is denoted by P̃5. P̃5 can be solved easily by an LP solver.

Let x̃k, ỹk denote the optimal solution of P̃5, where x̃k =

{xk
i |i ∈ I

′k}, and ỹk = {yk
ij |1 ≤ i < j ≤ N1}. Next we adopt a

randomized pairwise rounding method to round (x̃k, ỹk) into

an integral solution (xk,yk).

Rounding Algorithm. Since each yk
ij depends on xk, we

have to consider how to round x̃k first. A good rounding al-

gorithm should satisfy all constraints, and make the integrality

gap as small as possible. Our rounding algorithm is shown in

Alg. 2. Alg. 2 chooses a pair of fractions x̃k
i1 and x̃k

i2 for

rounding in each iteration in the loop of line 3-17, until a

single fraction is left. This pair-by-pair manner can guarantee

that: i) either x̃k
i1 or x̃k

i2 or both are converted to an integer after

one round iteration; ii) in this process, x̃k
i1 and x̃k

i2 compensate

each other, which ensures x̃k
i1+x̃k

i2 keeps unchanged, no matter

line 7 or line 8 is executed, so that the solution after the whole

rounding still satisfies the constraints; and iii) the expectation

of each xk
i remains the same before and after rounding.

Lemma 1. The integral solution (xk
i ,y

k
ij) are feasible to P5.

We analyze the integrality gap incurred by Alg. 2, and obtain

the following lemma.

Lemma 2. The integrality gap incurred by Alg. 2 is r, i.e., the
objective value obtained by Alg. 2 is no less than the objective
value of the constant r times the optimum solution of P̃5.

E[P̃5({(xk,yk), ∀k})] ≥ rP̃5({x̃k, ỹk), ∀k}) (10)

where
r =

min{s′k(i, j)}
max{s′k(i, j)}

M − 1

N1
. (11)

Algorithm 2 Randomized Pairwise Rounding, ∀k

Input: (x̃k, ỹk)
Output: (xk,yk)

1: θi � x̃k
i , ∀i;

2: I
′′k � I

′k\{i|θi ∈ {0, 1}};

3: while |I′′k| > 1 do
4: Select i1, i2 ∈ I

′′k, where i1 �= i2;
5: ω1 � min{1− θi1 , θi2};
6: ω2 � min{θi1 , 1− θi2};
7: With the probability ω2

ω1+ω2
,

Set θ
′
i1 = θi1 + ω1, θ

′
i2 = θi2 − ω1;

8: With the probability ω1
ω1+ω2

,

Set θ
′
i1 = θi1 − ω2, θ

′
i2 = θi2 + ω2;

9: if θ
′
i1 ∈ {0, 1} then

10: Set xk
i1 = θ

′
i1 , I

′′k = I
′′k\{i1};

11: else Set θi1 = θ
′
i1 ;

12: end if
13: if θ

′
i2 ∈ {0, 1} then

14: Set xk
i2 = θ

′
i2 , I

′′k = I
′′k\{i2};

15: else Set θi2 = θ
′
i2 ;

16: end if
17: end while
18: if |I′′k| = 1 then
19: Set xk

i = 1 for the only i ∈ I
′′k;

20: end if
21: for 1 ≤ i < j ≤ N1 do
22: yk

ij = xk
i x

k
j ;

23: end for
24: Return (xk,yk).

Selection Framework. The client selection framework is

presented in Alg. 3. Lines 1-6 filter out the clients that violate

the time constraint (7b) and the relevance constraint (7c). Line

7 obtain the fractional solution, and line 8 calls the subroutine

Alg. 2 to get the final selection decision.
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D. Model Aggregation

Based on the classic FedAvg, we make some improvements

on model aggregation, including: i) before aggregation, selects

M clients with the best local models that are the most

relevant with the current global model wk−1; and ii) during

aggregation, adds the accuracy factor qti to the aggregation

weight. For the measurement of relevance, we utilize the

method of literature [21]. Given the client i ’s local model

wk
i = (wk

i1, w
k
i2, · · · , wk

id), where d is the dimension of the

model, the estimated relevance between the local model and

the global model is:

e(wk
i ,w

k−1) =
1

d

d∑
j=1

I (sgn(wk
ij ) = sgn(wk

j )). (12)

As shown in Alg. 4, after receiving all the local models wk
i , the

server first filters out those irrelevant local models following

Eq. (12) in lines 1-4, and then conducts the accuracy-aware

weighted update in lines 5-7.

Algorithm 3 Selection Algorithm, ∀k

Input: C,K, γ0, I
k

Output: {xk
i |i ∈ I

k}
1: for each i ∈ I

k (in parallel) do
2: Compute Ĉk,i

tot by Eq. (4), and γk
i by Eq. (5);

3: if Ĉk,i
tot >

C
K

or γk
i < γ0 then

4: Set xk
i = 0, I

′k = I
k\{i};

5: end if
6: end for
7: Solve P̃5 to obtain its fractional solution (x̃k, ỹk);
8: Invoke Alg. 2 to round (x̃k, ỹk) to (xk,yk);
9: Return {xk

i |i ∈ I
k};

Algorithm 4 FL Aggregation, ∀k
Input: Received local models wk

i , i ∈ Ik

Output: Global model wk

1: for i ∈ Ik (in parallel) do
2: compute the update’s relevance e(wk

i ,w
k−1) following

Eq. (12);
3: end for
4: Sort clients according to e(wk

i ,w
k−1) and select the top M

clients, set the set of their indices as Ik;
5: for i ∈ Ik (in parallel) do
6: wk =

∑
i∈Ik

qki |Dk
i |wk

i
∑

i∈Ik
qki |Dr

i |
;

7: end for
8: Return wk;

Theorem 1. Hca can meet the job completion time and model
accuracy requirements of the FL job.

V. PERFORMANCE EVALUATION

A. Experimental Setup

FL Platform and Model. The testbed experiments are

carried out on the FL platform FAVOR [14]. We create 100

clients and each client with a PyTorch model is simulated

as a thread running synchronously in a global iteration. We

conduct experiments to train a classic CNN model with 5×5

convolutional layers. The output channels of the first and

second layers are 16 and 32 respectively, and each layer has

a 2×2 max pooling. The model is trained based on three

datasets: MNIST, Fashion-MNIST (FMNIST), and CIFAR-

10. MNIST is a dataset of handwritten digits and FMNIST

is a dataset of Zalando’s fashion article images, both of

which have a training set of 60,000 examples and a test set

of 10,000 examples. CIFAR-10 dataset consists of 50,000

training images and 10,000 test images. The images from

each dataset are divided into ten categories. The training task

is multi-classification, and we use cross-entropy as the loss

function. By default, we set α = 1.

Training Data. To simulate the non-IID distribution of

clients’ datasets in the real scenario, we select an amount

of data from one main dataset and randomly choose other

data from the other two datasets. In addition, the amount

of data from different categories is random. We call the

three processed datasets non-IID MNIST, non-IID FMNIST,

and non-IID CIFAR-10 respectively. Considering the realistic

scenario that clients are continuously collecting data and

updating its dataset, we randomly distribute a small part of

data to each client after each round of training. Before each

communication round, we calculate the relevance γk
i by Eq.

(5), and the similarity by Eq. (6). We use cross-entropy to

measure the loss. The values of job completion time and loss

are mapped to the range of 0-1 for normalized processing,

according to the actual observed time and loss range.

B. Performance of Pre-estimation
TABLE I: The value of three parameters for different α

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1
K 2 4 5 7 10 21 23 27 33 60
M 12 12 12 5 12 12 12 12 12 10
τ 3 3 3 7 3 3 3 3 3 10

We first verify the efficiency of the first stage: the pre-

estimation of three parameters K, M and τ . We train a CNN

model by adopting Hca on non-IID MNIST. We vary the value

of α and obtain the value of K, M and τ , and continue the

training by involving the second and third stage in Hca. Table

I shows the value of three parameters for different α.
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Fig. 2: Normalized completion
time, model loss and their
weighted sum.
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Fig. 3: Test accuracy with differ-
ent selection strategies on differ-
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Impact of α. We verify the effect of α on job requirements.

Specifically, we compare the model loss, the completion time

and their weighted sum with different α. From Fig. 2, we can

observe that when the value of α increases, the completion

time (green line) decreases, and the model loss (blue line)
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increases, which indicates that α has the trade-off effect

between the time and accuracy requirement.

C. Performance of Client Selection

Benchmarks. We compare our client selection scheme with

two commonly adopted client selection methods: Random and

FAIR [15]. To complete the training, we use the first and the

third stage in Hca to obtain three parameters and perform

model aggregation.

• Random: which selects R clients randomly.

• FAIR [15]: which greedily selects R clients with the best

training quality (the ones with the largest global loss

reduction).

Results. We fix K = 60,M = 10, τ = 10, which are obtained

from pre-estimation by setting α = 1. We conduct FL by

three selection methods on different datasets for 20 times,

and take the average as the finial output. Fig. 3 shows the

comparison of their average accuracies on non-IID MNIST,

non-IID FMNIST and non-IID CIFAR-10. We can observe

that for all datasets, the performance of our selection strategy

is the best. The random selection has the worst performance.

D. Performance of Model Aggregation

Benchmarks. We compare our model aggregation method

with FedAvg [3] and CMFL [21].

• FedAvg [3]: wk is updated without integrating qki .

• CMFL [21]: which filters out the irrelevant local mod-

els and averages local model parameters by FedAvg’s

method.
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Results. We compare three aggregation methods by imple-

menting the first and the second stage in Hca, and conduct

training on a CNN model for 20 times. Fig. 4 shows the

training accuracies of different aggregation approaches. From

Fig. 4 we can observe that on MNIST, FMNIST and CIFAR-

10, FedAvg performs the worst, whose average accuracy is

2.5%, 6.3% and 7.5% less than that of Hca. We can conclude

that our aggregation approach is superior to the other two

approaches.

E. Performance of Hca

Benchmarks. We finally evaluate the overall performance of

Hca. We compare Hca with two commonly used FL frame-

works: FedAvg [3] and FAIR [15]. In addition to CNN multi-

classification task, we also study the performance of logistic

regression task performed on the FashionMNIST dataset.

• FedAvg [3]: which randomly selects a fraction of clients

for training and aggregates models by FedAvg algorithm

with random K, M and τ .

• FAIR [15]: which greedily selects R clients with the

best training quality (the ones with the largest global

loss reduction) and integrates the quality into model

aggregation with random K, M and τ .
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Fig. 6: Test accuracy with differ-
ent FL frameworks on different
non-IID datasets.

Fig. 7: Test accuracy for logistic
regression task on non-IID FM-
NIST.

Results. To evaluate the performance of Hca on job comple-

tion time, we vary the value of α and plot the completion time

of three frameworks in Fig. 5. We can see that Hca has the

shortest job completion time and can almost double FedAvg’s

training speed. When α grows, two benchmarks need more

time to achieve the desired accuracy. Fig. 6 shows the training

accuracy for CNN multi-classification task. Fig. 7 shows the

model accuracy in 60 rounds for logistic regression task of the

three models, in which we can observe that the model obtained

by our proposed training framework for logistic regression

task is significantly better than the other two FL frameworks.

Fig. 8-Fig. 10 further illustrate the dynamic change of accuracy

in 60 rounds. We can observe that although the accuracy

gap between FAIR and Hca shown in Fig. 6 is not large,

the convergence rate of Hca is much faster than the other

two frameworks, and the training process is more stable. For

instance, from Fig 10, Hca converges to a stable accuracy in

about 15 rounds. The model loss is demonstrated in Fig. 11-

Fig. 13. We can conclude that Hca has the best training

performance in FL for different kinds of tasks.

VI. CONCLUSION

In this paper, we propose Hca, a heterogeneous FL frame-

work for balancing job completion time and model accuracy.

Different from existing literature, our framework consists

of three stages. First, we determine the number of training

rounds, the number of iterations and the number of partici-

pating clients in each round, to satisfy FL job’s requirement

on job completion time and model accuracy. Second, a multi-

criteria client selection framework is involved in selecting the

most efficient clients for the FL job. At last, we tailor an

improved model aggregation algorithm to further optimize the

quality of the FL model. The extensive results from testbed

experiments based on real-world data verify that Hca achieves

near-optimal performance in both model accuracy and job

completion time, compared with existing FL frameworks.
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Fig. 11: Global loss on non-IID MNIST
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