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Abstract—Graph convolutional network (GCN) has achieved
enormous success in learning structural information from un-
structured data. As graphs become increasingly large, distributed
training for GCNs is severely prolonged by frequent cross-
worker communications. Existing efforts to improve the training
efficiency often come at the expense of GCN performance, while
the communication overhead persists. In this paper, we propose
PSC-GCN, a holistic pipelined framework for distributed GCN
training with communication-efficient sampling and inclusion-
aware caching, to address the communication bottleneck while
ensuring satisfactory model performance. Specifically, we devise
an asynchronous pre-fetching scheme to retrieve stale statistics
(features, embedding, gradient) of boundary nodes in advance,
such that the embedding aggregation and model update are
pipelined with statistics transmission. To alleviate communication
volume and staleness effect, we introduce a variance-reduction
based sampling policy, which prioritizes inner nodes over bound-
ary ones for reducing the access frequency to remote neighbors,
thus mitigating cross-worker statistics exchange. Complementing
graph sampling, a feature caching module is co-designed to
buffer hot nodes with high inclusion probability, ensuring that
frequently sampled nodes will be available in local memory.
Extensive evaluations on real-world datasets show the superiority
of PSC-GCN over state-of-the-art methods, where we can reduce
training time by 72%-80% without sacrificing model accuracy.

I. INTRODUCTION

Recent years have witnessed the pervasiveness of graph-
structured data in many real-world applications, such as social
network analysis [1], molecular protein discovery [2], road
traffic prediction [3], and knowledge graph construction [4].
To handle such unstructured data, substantial efforts have
been devoted to extending deep neural networks to learn the
structural representation on graphs, giving rise to the paradigm
of graph neural networks [5]. Among these approaches, graph
convolutional networks (GCNs) have emerged as a promising
method for dealing with various graph-related situations [6],
and achieved immense success in handling general tasks
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including the node classification [7], link prediction [8], and
graph classification [9].

GCNs extract structural information by leveraging tradi-
tional convolution operations and iterative neighbor aggrega-
tions. To learn the embedding of a specific graph node, GCNs
aggregate the features and embedding of its neighbors, and
perform convolutional matrix multiplication layer by layer.
While this unique operation facilitates GCNs to effectively
express the graph structure, it comes at the expense of training
efficiency [10], [11]. At a high level, the edge connections
between nodes impose dependencies among graph data, which
can hinder the efficient learning of node representations, or
the embedding, during GCN training. Even worse, real-world
graphs can be huge, may contain million or billion nodes and
edges [12], [13]. Such large graph size far exceeds the GPU
memory capacity (at tens of GB), making it impossible to
load the entire data into a single worker device. As such,
GCN training on large graphs is commonly conducted in a
distributed manner, where the graph is partitioned into various
subgraphs among multiple workers and processed in parallel.
Although distributed GCN relieves the memory constraint on
an individual worker, it introduces significant communication
overhead due to iterative neighbor aggregations. To elaborate,
statistics of boundary nodes (neighbor nodes required for local
embedding learning) are stored in remote workers, and as GCN
models become deeper, the number of boundary nodes can in-
crease exponentially. Consequently, cross-worker transmission
also grows drastically, leading to communication becoming the
major bottleneck that impairs the training efficiency.

Considerable efforts have been devoted to taming the
communication bottleneck for expediting GCN training. In
particular, various sampling-based techniques are proposed to
reduce the communication overhead by down sampling the
graphs [1], [14], [15]. Besides, discarding unimportant features
of sampled nodes also results in a communication mitiga-
tion, especially the cross-worker transmission [16]. Though
effective, sampling-based distributed GCN often incurs in-
accurate embedding estimation which harms the learning
performance, yet the communication overhead still remains
a significant factor and dominates the overall training time.
An alternative approach is to leverage the full graph and use



asynchronous GCN training by retrieving stale statistics of
boundary nodes [17]. This method is restricted to the one-step
asynchronization. Caching a small portion of graph data helps
reduce the feature transmission frequency [18]. Nonetheless,
existing caching policies typically operate standalone without
the coordination with the training process, often resulting in a
poor cache hit rate. A critical question remaining suspended
is how to fully pipeline the distributed GCN training while
ensuring favorable learning performance. To cope with this
problem, researchers face the following challenges.

First and foremost, addressing the communication bottle-
neck in distributed GCN requires a holistic design in the
training framework, rather than only focusing on specific
acceleration techniques like the asynchronous scheme. To
improve the efficiency of learning GCN models, we need to
carefully orchestrate the workflow of each training subroutine
with exquisitely-designed distributed implementations, which
is still unresolved. Second, graph sampling has been recog-
nized as an effective approach to extend the scalability of
handling large graphs. However, aside from the non-negligible
additional overhead, sampling policy should also strike a
delicate balance between the incurred errors in embedding
estimation and transmission cost in cross-worker communi-
cation, which can not be accommodated by existing sampling
models. Third, pipelining the communication and computation
processes in distributed GCN needs to align the GPU execution
speed with the network transmission rate. In practice, cutting-
edge GPU workers often run significantly faster than statistics
exchange via CPU and NIC. This speed mismatch imposes
unique challenges on achieving a seamlessly pipelined training
without compromising the learning performance.

In this paper, we propose a comprehensive pipelined frame-
work with one-hop neighbor sampling and node feature
caching to minimize the communication overhead in dis-
tributed GCN training. Concretely, we first devise a general
asynchronous scheme to pre-fetch stale statistics (features,
embedding, intermediate gradient) of sampled boundary nodes
in advance. By doing this, we aim to hide the cross-worker
statistics transmission into local embedding aggregation and
model update. Considering that large statistics staleness for
pipelining can harm the GCN performance, we then design a
communication-efficient sampling policy to alleviate the trans-
mission volume as well as the staleness effect. Our designed
sampling can select the best one-hop neighbor nodes to ensure
a full-graph training and minimize embedding estimation error,
leading to enhanced learning performance compared to vanilla
schemes. Complementing the graph sampling, we further co-
design a caching policy to locally buffer hot boundary vertices
with high inclusion probabilities, which significantly improves
the cache hit rate. As a result, our framework ensures fairly low
statistics staleness, while effectively pipelining the distributed
GCN training. The main contributions are summarized.
• We propose PSC-GCN, a holistic pipelined framework

with communication-efficient sampling and inclusion-aware
caching, to fully mitigate the communication overhead in
distributed GCN training. Specifically, we characterize a

general asynchronous scheme to retrieve sampled boundary
nodes in advance, which can tame the communication
bottleneck and enjoy an O(T−2/3) training convergence.

• We design a variance-reduction based graph sampling pol-
icy that prioritizes the inner nodes over boundary ones.
As a result, cross-worker statistics exchange is significantly
reduced, while low embedding estimation error is achieved
simultaneously. By employing a semi-dynamic sampling ex-
ecution, we can greatly promote GCN performance without
introducing extra sampling computations to each worker.

• To alleviate the communication and staleness impact in
pipelined GCN training, we incorporate graph sampling to
devise a light-weight caching policy for buffering boundary
nodes in local GPU memory. In particular, cache update is
implemented based on the inclusion probability that a node
will be sampled, thus optimizing the potential cache hit rate.

• Extensive experiments on real-world datasets are carried out,
which corroborate the superiority of PSC-GCN over state-
of-the-art approaches by reducing 72%-80% training time
and achieving 4.6-6.3 times faster per model update.

II. PRELIMINARY AND SYSTEM OVERVIEW

We start by introducing the basics of GCNs, and then
provide a high-level system overview of PSC-GCN.

A. GCNs and Distributed Training

1) Graph Convolutional Networks: GCNs are designed for
graph-structured data to learn the feature vector (embedding)
for each node of the graph [1], [6]. Denote a graph as G =
(V, E , X), where V and E are node and edge sets, respectively,
with X ∈ R|V|×D representing the node feature matrix. To
learn node embedding, GCN performs neighbor aggregation
and node update in each layer:

Z(l+1) = PH(l)W (l+1), H(l+1) = σ(Z(l+1)). (1)

Here P = D̃− 1
2 ÃD̃− 1

2 is the propagation matrix, where
Ã = A + I|V| is the adjacency matrix of G including self-
connections and D̃ii =

∑
j Ãij denotes the degree matrix.

Besides, W (l) is the trainable weight matrix and σ (·) indicates
the activation function, like ReLU, to introduce non-linearity.
The embedding H(l+1), or intermediate embedding Z(l+1),
in the (l + 1)-th layer is characterized by aggregating the
embedding vectors of neighbors from previous layer, and often
we mark H(0) = X for ease of exposition. Taking a node
i ∈ V as an example, whose one-hop neighbor set is Ni, then
Z

(l+1)
i = (PH(l))iW

(l+1) = (
∑

j∈Ni
PijH

(l)
j )W (l+1).

2) Sampling-based GCN Training: Training an L-layer
GCN is to learn the weight parameter Θ = [W (1), · · · ,W (L)].
This can be achieved by minimizing the loss function:

L(Θ) = 1
|V|

∑
i∈V L(yi, Z(L)

i ), (2)

and performing iterative gradient descent on Θ, where yi
denotes the node label and Z

(L)
i is the output intermediate

embedding for label prediction.



TABLE I: Average inner/boundary nodes based on METIS partition.

Dataset Partitions Inner nodes Boundary nodes

Reddit
4 58.2K 94.9K
6 38.8K 89.4K
8 29.1K 90.7K

Ogbn-products
4 612.3K 271.3K
6 408.2K 245.3K
8 306.1K 208.8K

Yelp
4 179.2K 120.6K
6 119.5K 124.7K
8 89.60K 115.5K

Fig. 1: Training time. Fig. 2: GPU utilization.

Real-world graphs can be very large [19], far exceeding the
capability of vanilla full-graph training. As such, sampling-
based techniques, like node-wise GraphSAGE [1], layer-wise
LADIES [14] or sub-graph sampling GraphSAINT [15], have
been devised to down-sample a mini-batch neighbors for GCN
training, thereby extending the scalability that a single device
can handle. In the process, propagation matrix P (l) in the l-
th layer will be rescaled by the sampling probability. While
sampling approaches effectively reduce the training graph size,
they also bring in inaccurate embedding aggregation [20].

3) Distributed GCN Training: To build GCN models on
giant graphs, distributed training complements graph sampling
by using multiple workers (GPUs). In general, the full graph
is initially divided into several partitions, each stored in a
different worker, employing methods like METIS [21]. During
training, each worker samples a mini-batch nodes and fetches
their features from local or remote partitions in every iteration,
and then performs forward pass to learn node embedding
and backward pass to update weight parameters. That is, dis-
tributed GCN training involves frequent statistics transmission
(embedding, gradient, etc.) through PCIe or LAN.

B. Motivation

Despite the benefits of distributed GCN, communication has
been recognized as the primary bottleneck that impairs training
efficiency [11]. Table I provides the statistical information of
inner and boundary nodes conditioned on various partitions,
which shows that boundary nodes are at the same-level as inner
nodes, implying high cross-worker communications during
GCN training. To elaborate, we train GCN with 0.3 node-
wise sampling rate on Reddit [1], Ogbn-products [19], and
Yelp [15] using DGL [22], where we employ six NVIDIA
T4 GPUs linked by 15Gpbs network. We display the training
time in Fig. 1, as well as the GPU utilization in Fig. 2.
One can observe that the communication time significantly
surpasses computation overhead, occupying around 66%-81%
of the total training time. Also, GPU utilization fluctuates at a
low level, with only 35%-39% computing resource being used.

Cache
n

Communicator

Feature
Storage

...
Trainer

Remote Worker 

Local Worker 

Sampler

Fig. 3: PSC-GCN overview.
There is a clear gap between the network transmission rate

and GPU execution speed. Although recent advancements have
been made in sampling-based training [23] or communication
computation pipeline [17], the communication bottleneck still
persists with substantial statistics exchange cost. This high-
lights the urgency to co-design a distributed GCN framework
to fully eliminate the communication overhead while ensuring
model performance.

C. System Overview
In this paper, we propose PSC-GCN, a pipelined framework

with communication-efficient sampling and inclusion-aware
caching, to mitigate communications in learning GCN models.

1) PSC-GCN Workflow: At a high level, PSC-GCN is a
full-graph approach with one-hop neighbor sampling to bal-
ance the training efficiency and learning performance. In this
framework, each worker asynchronously retrieves the statis-
tics (features, embedding, intermediate gradient) of sampled
boundary neighbors, as they are stored in remote workers.
Fig. 3 illustrates the system workflow of PSC-GCN, which is
mainly composed of the trainer, sampler, and cache modules.

PSC-GCN trainer is responsible for scheduling the training
graph to GPU for processing. In the t-th iteration of model
update, trainer uses stale information in the (t−τ)-th iteration
of sampled boundary nodes and the latest information of
inner nodes (co-located at the same worker) in forward and
backward pass. Such asynchronous scheme pipelines the com-
munications with local computations. However, it is essential
to ensure that the staleness τ is not too large, as excessive
staleness may adversely affect the GCN performance. Sampler
module is designed to sample one-hop neighbors so as to re-
duce the communication volume, or equivalently the staleness
τ . Sampler requires to determine the selected neighbors to
form the training graph, so that trainer can fetch the boundary
nodes’ statistics in the t-th iteration, for use in the (t + τ)-
th model update accordingly. Cache module complements the
sampler by caching features of hot boundary nodes. This
way, trainer could directly access the node features from
local memory if they are sampled and cached, thereby further
mitigating the cross-worker transmissions. Communicator is
invoked when we need to transfer the statistics during training.

2) Challenge: The implementation of PSC-GCN is con-
fronted with three primary challenges. First, PSC-GCN is a
general asynchronous framework for distributed GCN training.
How to fully pipeline the communication under the premise
of favorable convergence is still unresolved. Second, neighbor
sampling in a distributed fashion needs to balance the embed-
ding estimation error and communication overhead, which has



not been extensively examined before. Last, feature caching
should be light-weight enough while ensuring high hit rate
of sampled boundary nodes. This requires a co-design of
sampling and caching polices instead of separate explorations.

III. PIPELINING DISTRIBUTED GCN TRAINING

In this section, we will illustrate the framework of PSC-
GCN and analyze its convergence accordingly.

A. PSC-GCN Design

1) Full-graph Training Description: For ease of exposition,
we first elucidate full-graph based synchronous distributed
GCN training. The whole graph G will be divided into N
partitions {G0, . . . ,GN−1} among N workers in the pre-
training phase, where partition Gn holds the inner nodes
IGn and boundary nodes BGn from other graph partitions. In
general, boundary nodes are required in embedding aggrega-
tion for inner nodes across neighbor partitions. In the t-th
iteration, worker n will attain the embedding of BGn

, that is
concatenated with the inner node embedding to form:

H
(t,l)
Gn

= concat
(
H

(t,l)
IGn

, H
(t,l)
BGn

)
. (3)

Then, the (l+1)-th layer embedding H
(l+1)
IGn

of IGn
is obtained

according to Eq. (1). Regarding an L-layer GCN model, we
have to iterate such neighbor aggregation for L times until
the forward pass completes. As a result, we can acquire the
training loss L(Θ) based on Eq. (2) using the final outputs
Z

(L)
IGn

and labels YIGn
. Gradient with respect to (w.r.t.) the

predicted labels, also denoted as the last embedding H
(L)
IGn

for
brevity, is attained immediately:

J
(t,L)
IGn

= ∂L(Θ)

∂H
(t,L)
IGn

. (4)

In the backward pass, each worker calculates the gradient
G

(t,l+1)
n corresponding to each layer weight W (l+1), which

follows the chain rule:

G
(t,l+1)
n =

[
PGn

H
(t,l)
Gn

]⊤ (
J
(t,l+1)
IGn

◦ σ′
(
PGn

H
(t,l)
Gn

W (t,l+1)
))

, (5)

where ⊤ means matrix transpose. One can see that the weight
gradient depends on the gradient w.r.t. layer embedding, i.e.,

J
(t,l)
Gn

= P⊤
Gn

(
J
(t,l+1)
IGn

◦ σ′
(
PGn

H
(t,l)
Gn

W (t,l+1)
)) [

W (t,l+1)
]⊤
, (6)

where J
(t,l)
Gn

= concat
(
J
(t,l)
IGn

, J
(t,l)
BGn

)
. Owing to the connection

between neighbors, embedding gradient of inner nodes and
that of boundary nodes need to be merged if they intersect.
More concretely, consider ICGn

⊆ IGn
as the inner nodes

which are also boundary nodes in remote partitions. Then

J
(t,l)
IGn

= accumulate(J
(t,l)
IGn

, J
(t,l)
ICGn

). (7)

Here J
(t,l)
ICGn

is calculated by remote workers and added to

J
(t,l)
IGn

computed by worker n. In other words, statistics trans-
mission is also demanded in the backward pass.

Finally, workers perform all-reduce on all GCN layers:

G(t,l) = AllReduce
(
G(t,l)

n

)
,∀l = 1, · · · , L, (8)

Algorithm 1: PSC-GCN training (worker view)
Input: Partition Gn, inner node set IGn

, features XIGn
,

labels YIGn
, learning rate η, initial model W0,

total iterations T , staleness τ , sample rate ε
Output: Weight parameter WT

1 Initialize H
(t,0)
IGn

= XIGn
and sample graph queue

Q = ∅;
2 for τ iterations do
3 SG = SampleGraph(Gn, IGn

, ε), Q.push(SG);
4 for t = 0, · · · , T − 1 do
5 T G = Q.pop();
6 with threads
7 SG = SampleGraph(Gn, IGn

, ε),
Q.push(SG);

8 for l = 0, · · · , L− 1 do
9 if t > τ then

10 Wait for threadt−τ
f to complete;

11 H
(t,l)
T G = concat(H

(t,l)
IT G

, H
(t−τ,l)
BT G

);

12 with threadtf
13 Fetch H

(t,0)
BSG

from cache or remote workers;
14 Fetch H

(t,l)
BSG

, l > 0 from remote workers;

15 H
(t,l+1)
T G = σ

(
PT GH

(t,l)
T G W (t,l+1)

)
;

16 L(Θ(t)) = L
(
Z

(t,L)
IT G

, YIT G

)
, J (t,L)

IT G
= ∂L(Θ(t))

∂H
(t,L)
IT G

;

17 for l = L− 1, · · · , 0 do
18 G

(t,l+1)
n =

[
PT GH

(t,l)
T G

]⊤ (
J
(t,l+1)
IT G

◦ σ′
(
PT GH

(t,l)
T G W (t,l+1)

))
;

19 if l > 0 then
20 J

(t,l)
T G = P⊤

T G

(
J
(t,l+1)
IT G

◦ σ′
(
PT GH

(t,l)
T G W (t,l+1)

)) [
W (t,l+1)

]⊤;
21 if t > τ then
22 Wait for threadt−τ

b to complete;
23 J

(t,l)
IT G

= accumulate(J
(t,l)
IT G

, J
(t−τ,l)
ICT G

);

24 with threadtb
25 Fetch J

(t,l)
ICSG

from remote workers;

26 G(t) = AllReduce
(
G

(t)
n

)
;

27 Θ(t+1) = Θ(t) − ηG(t);

and update weight parameters:

W (t+1,l) = W (t,l) − ηG(t,l),∀l = 1, · · · , L. (9)

Since GCN model often includes only 3 or 4 layers [1], [6],
the all-reduce communication volume is negligible compared
to the statistics exchange, as also verified in Fig. 1.

2) Asynchronous PSC-GCN: Synchronous distributed GCN
encounters frequent statistics exchange, which forces the local
embedding and gradient computation to stop and wait. To
tame this communication bottleneck, PSC-GCN implements
an asynchronous training to pre-fetch essential statistics, like
embedding and intermediate gradient, of boundary nodes BGn
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Fig. 4: Pipelined computation and communication.

ahead of τ, τ ≥ 1 iterations before the t-th model update.
In this respect, Eq. (3) will involve H

(t−τ,l)
BGn

and Eq. (7) uses

J
(t−τ,l)
ICGn

, so that the cross-worker communication is overlapped
with local computation. As large staleness τ may damage GCN
performance, we incorporate graph sampling and caching into
PSC-GCN to reduce the communication volume and statistics
staleness, which will be elaborated in subsequent sections.

B. Algorithm Description

In general, we present our PSC-GCN in Algorithm 1 and
show the pipelining process in Fig. 4. At the beginning, we
initialize H

(t,0)
IGn

as the inner node features XIGn
, and push

the sampled graph SG (inner nodes with their sampled one-
hop inner and boundary neighbors) into queue Q, where
SampleGraph() in Line 3 implies the communication-efficient
sampling policy, to be explained in the next section. In iteration
t, every worker n first constructs the training graph T G by
popping the head out of queue Q, and also samples new graph
(threads) for future use due to the τ -step asynchronization
(Lines 5-7). Based on T G, worker n performs the forward
pass to aggregate embedding and compute loss, and backward
pass to derive the weight gradient G(t)

n .
The forward pass propagates from the first layer to the last

layer. We obtain layer embedding H
(t,l)
T G by concatenating the

stale embedding of sampled boundary nodes H
(t−τ,l)
BT G

which
were transmitted asynchronously (threadt−τ

f ) in the (t− τ)-
th iteration, and the latest embedding of inner nodes H

(t,l)
IT G

according to Eq. (3) (Lines 9-11). Also, the worker will pre-
retrieve (threadtf ) the embedding of the sampled boundary
neighbors in Lines 12-14, which are used in the (t + τ)-th
iteration for embedding aggregation. Specifically, the first layer
embedding H

(t,0)
BSG

(features) can be obtained from local cache
if the boundary node is sampled and cached. Besides, we have
to fetch the embedding of subsequent layers H(t,l)

BSG
, l > 0 from

remote workers, which can not be cached in local memory due
to their dynamically changing values. Using the outputs Z(t,L)

IT G
and labels YIT G , we derive the loss value in Line 16. Note that
the embedding transmission (communication) and aggregation
(computation) run concurrently as they are executed by CPU
together with NIC, and GPU, respectively.

Backward pass is conducted to acquire the gradient w.r.t.
weight parameter from the end to front (Lines 17-25). In
particular, worker n needs to calculate both the weight and
embedding gradients alternatively (Lines 18-20), and also
retrieves the gradient J

(t−τ,l)
ICCG

of sampled boundary nodes
ahead of τ steps in line with Eq. (7) (Lines 21-23). At the
same time, the worker will fetch J

(t,l)
ICSG

from remote partitions
in Lines 24-25, which is prepared for gradient calculation in

the (t+τ)-th iteration considering asynchronous training. All-
reduce is performed on the gradients across all workers, and
finally the weight parameter is updated (Lines 26-27).

C. Convergence Analysis
Now, we characterize the convergence behavior of PSC-

GCN. Generally, the main difference between PSC-GCN and
synchronous full-graph training lies in the stale statistics
and neighbor sampling. In this respect, we first analyze the
error and bias introduced by asynchronous training and graph
sampling, which will aid PSC-GNN convergence analysis. Due
to space limit, we omit the proofs and only show the results.

Lemma 1. Considering full graph without sampling, the error
introduced by asynchronous training is bounded:

∥∇̃L(Θ(t))− L(Θ(t))∥2 ≤ η2τ2Ca, (10)

where ∇̃L(Θ(t)) denotes the gradient of using τ -step stale
statistics and Ca is a finite constant.

Lemma 1 states that the error between asynchronous and
synchronous full-graph training is quadratically proportional
to the staleness τ . Next, we illustrate the sampling influence.

Lemma 2. The error incurred by neighbor sampling satisfies

∥G(t) − ∇̃L(Θ(t))∥2 ≤ Cs, (11)

where Cs implies a finite value.

In fact, Eq. (11) can be broken down into the bias ∥E[G(t)]−
∇̃L(Θ(t))∥2 and variance ∥G(t) − E[G(t)]∥2, which both
depend on the sampling policy but will not go to infinity [20].
On the basis of asynchronous and sampling errors, we provide
the convergence rate of PSC-GCN.

Theorem 1. Suppose the loss function is K-smooth and ηK ≤
1, then we have:

1
T

T−1∑
t=0

E[∥∇L(Θ(t))∥2] ≤ 2(L(Θ(0))−E[L(Θ(T ))])
ηT + 2η2τ2Ca + 2Cs.

(12)

Proof. Since the loss satisfies K-smoothness, we attain:

E[L(Θ(t+1))] ≤ E[L(Θ(t))] + E[⟨∇L(Θ(t)),Θ(t+1) −Θ(t)⟩]

+
K

2
E[∥Θ(t+1) −Θ(t)∥2]

= E[L(Θ(t))]− ηE[⟨∇L(Θ(t)), G(t)⟩] + η2K

2
E[∥G(t)∥2]

= E[L(Θ(t))] +
η

2
E[∥∇L(Θ(t))−G(t)∥2]

− η

2
E[∥∇L(Θ(t))∥2]−

(η
2
− η2K

2

)
E[∥G(t)∥2]

≤ E[L(Θ(t))] +
η

2
E[∥∇L(Θ(t))−G(t)∥2]− η

2
E[∥∇L(Θ(t))∥2],

(13)

where the last inequality is owing to ηK ≤ 1. Let us focus
on the term η

2E[∥∇L(Θ(t))−G(t)∥2].
η

2
E[∥∇L(Θ(t))−G(t)∥2]

=
η

2
E[∥∇L(Θ(t))− ∇̃L(Θ(t)) + ∇̃L(Θ(t))−G(t)∥2]

a
≤ ηE[∥∇L(Θ(t))− ∇̃L(Θ(t))∥2] + ηE[∥∇̃L(Θ(t))−G(t)∥2]
b
≤ η3τ2Ca + ηCs,

(14)



in which
a
≤ is from Cauchy–Schwarz inequality and

b
≤ is

according to Lemmas 1-2. Combining Eqs. (13) and (14),
we obtain E[L(Θ(t+1))] ≤ E[L(Θ(t))] + η3τ2Ca + ηCs −
η
2E[∥∇L(Θ(t))∥2]. Arrange the terms, then
η

2
E[∥∇L(Θ(t))∥2] ≤ E[L(Θ(t))]− E[L(Θ(t+1))] + η3τ2Ca + ηCs.

Telescope both sides from t = 0 to T − 1, and divide ηT
2 to

yield the final result in Eq. (12).

Regarding Theorem 1, we have the following observations.
• The smoothness assumption of loss function is commonly

adopted in previous works [17], [20]. Actually, this prereq-
uisite can be derived from a series of simpler conditions.

• If we set the learning rate η = O(T−1/3), then the
convergence will be O(T−2/3). As for the non-vanishing
term 2Cs, it will exist as long as neighbor sampling is
leveraged to accelerate GCN training.

IV. COMMUNICATION-EFFICIENT GRAPH SAMPLING

This section is dedicated to design a communication-efficient
sampling policy for reducing the whole embedding estimation
variance of all layers.

A. Embedding Aggregation Variance
To begin with, we elaborate the estimation error introduced

by graph sampling. Suppose that a boundary or inner node j
is a one-hop neighbor of inner node i, i.e., j ∈ Ni. Graph
sampling is to determine the probability pij that neighbor j
is sampled by node i in its embedding aggregation. To this
end, define a random variable χj ∼ Bernoulli(pij) to indicate
whether the neighbor is selected. Hence, we have an unbiased
estimation [17] of i’s intermediate embedding Z

(l+1)
i as:

Z
(l+1)
i =

∑
j∈Ni

χjW
(l+1)
ij P

(l)
ij H

(l)
j =

∑
j∈Ni

1
pij

χjW
(l+1)
ij PijH

(l)
j . (15)

Here P
(l)
ij is the rescaled propagation coefficient by mul-

tiplying 1
pij

, and W
(l+1)
ij implies the corresponding weight

parameter. Note that Z(t,l+1)
i in the t-th iteration will leverage

τ -step ahead H
(t−τ,l)
j if j is a boundary neighbor and the

latest embedding H
(t,l)
j of inner node due to asynchronous

training. In this section, we omit the time index t mainly for
ease of exposition. As a result, the overall estimation variance
of all L layers is obtained:

vari = E
[∥∥∥L−1∑

l=0

(∑
j∈Ni

( 1

pij
χjW

(l+1)
ij PijH

(l)
j −W

(l+1)
ij PijH

(l)
j

))∥∥∥2]

= E
[∥∥∥L−1∑

l=0

(∑
j∈Ni

( 1

pij
χj − 1

)
W

(l+1)
ij PijH

(l)
j

)∥∥∥2]

= E
[∥∥∥∑

j∈Ni

( 1

pij
χj − 1

) L−1∑
l=0

W
(l+1)
ij PijH

(l)
j

∥∥∥2]
= E

[∥∥∥∑
j∈Ni

( 1

pij
χj − 1

)∥∥∥2∥yij∥2
]

=
∑
j∈Ni

( 1

pij
− 1

)
∥yij∥2,

(16)

where yij =
[
W

(1)
ij PijH

(0)
j , · · · ,W (L)

ij PijH
(L−1)
j

]
denotes

the concatenation of aggregated embedding. Since latest H(l)
j

can not be acquired in the sampling phase which is decided
before the training in current iteration, a remedy is to use the
embedding information from previous iterations, i.e., deter-
mine the sampled graph ahead for later GCN model updates.

Conditioned on the number of neighbor nodes |Ni|, we
consider

∑
j∈Ni

pij = Bi with Bi = ε|Ni|, ε ∈ (0, 1], that is,
node i will choose neighbors with sampling rate ε on average.

B. Communication-Efficient Variance Reduction

1) Variance Reduction Formulation: Our goal is to find the
optimal sampling probabilities for neighbors Ni to minimize
the embedding estimation variance, which can be casted as the
following optimization problem:

min vari =
∑
j∈Ni

aj

( 1

pij
− 1

)
∥yij∥2

s. t.
∑
j∈Ni

pij = Bi, 0 < pij ≤ 1.
(17)

In particular, we introduce a factor aj for rescaling vari in
Eq. (16) to vari, which is to prioritize local inner neighbors
over remote boundary ones in graph sampling. To be more
specific, inner nodes are associated with higher factor aj and
boundary nodes have lower aj , so that we can weigh more
on the inner variance. By doing so, the sampling probability
of inner neighbors will be adjusted to a larger value, while
that of boundary neighbors will be smaller, i.e., cross-worker
communication volume is reduced.

2) Sampling Probability Solution: To solve Eq. (17), we
construct its Lagrange function by combining the constraints:

Φ(λ,α,β) =
∑
j∈Ni

aj

( 1

pij
− 1

)
∥yij∥2 + λ

(∑
j∈Ni

pij −Bi

)
−

∑
j∈Ni

αjpij +
∑
j∈Ni

βj (pij − 1) ,
(18)

where λ, αj , βj are Lagrange multipliers. Accordingly, the
KKT conditions are characterized to derive the solution.

∂Φ
∂pij

= − aj

p2
ij
∥yij∥2 + λ− αj + βj = 0,∀j ∈ Ni,∑

j∈Ni
pij −Bi = 0,

αjpij = 0,∀j ∈ Ni,
βj (pij − 1) = 0,∀j ∈ Ni.

We present the following classified discussions.
• Since the probability pij > 0, it is obvious that αj = 0.
• If βj > 0, then pij = 1, and aj ∥yij∥2 = λ+ βj > λ.
• If βj = 0, then we have pij =

√
aj∥yij∥√

λ
.

Putting them all together, there must exist a threshold
λ∗ that divides neighbor nodes Ni into two subsets: 1)
{j : aj ∥yij∥2 < λ∗} of size k with pij =

√
aj∥yij∥√

λ∗ ; 2)
{j : aj ∥yij∥2 > λ∗} of size (|Ni| − k) with pij = 1. The re-
maining issue is to find the threshold value, which is computed
based on the fact that

∑k
j=1

√
aj∥yij∥√

λ∗ + |Ni| − k = Bi.



Algorithm 2: SampleGraph
Input: Graph G, target nodes TG , sampling rate ε
Output: Subgraph SG

1 p =
[
p1, . . . ,p|TG |

]
where pi =

[
pi1, . . . , pi|Ni|

]
;

2 Initialize pij = ε, ∀pij ∈ p;
3 Estimate yij based on historical information;
4 for i ∈ TG do
5 for j ∈ Ni do
6 Bi = ε× |Ni|;
7 Assign each sampling probability pij ∈ pi

according to Eq. (19);

8 Sample a subgraph SG obeying to p;
9 return SG

Theorem 2. Suppose that the neighbor nodes Ni are sorted in
an ascending order by aj ∥yij∥2. Let k be the largest integer

that satisfies Bi + k− |Ni| ≤
∑k

j=1

√
aj∥yij∥√

ak∥yik∥ , then we can set
√
λ∗ =

∑k
j=1

√
aj∥yij∥

Bi+k−|Ni| , and the sampling probability is

pij =

{
(Bi + k − |Ni|)

√
aj∥yij∥∑k

l=1

√
al∥yil∥

if j ≤ k,

1 if j > k.
(19)

One can substitute the probability in Eq. (19) into the
KKT conditions to verify its correctness. Besides, when Bi ≤∑|Ni|

j=1

√
aj∥yij∥

√
a|Ni|∥yi|Ni|∥

, Eq. (19) will boil down to the importance

sampling with pij = Bi

√
aj∥yij∥∑|Ni|

l=1

√
al∥yil∥

. In this respect, we

compare the theoretical rescaled variances of the importance
sampling and conventional random sampling to show the
superiority of PSC-GCN.

Lemma 3. Denote varimi as the rescaled estimation variance
of importance sampling, and varrdi as that of random sampling
prd =

[
prd1 , · · · , prd|Ni|

]
with prdj = Bi

|Ni| . Then, the variance
difference satisfies:

varrdi − varimi =
|Ni|
Bi

∑
j∈Ni

aj ∥yij∥2 −
1

Bi

(|Ni|∑
j=1

√
aj ∥yij∥

)2

. (20)

Since Eq. (20) is non-negative from Cauchy–Schwarz in-
equality, this lemma implies that our variance-reduction based
sampling yields lower error than vanilla sampling policy.

C. Sampling Algorithm Description

Algorithm 2 describes the communication-efficient sam-
pling policy for variance reduction. Concretely, inputs for Line
3 in PSC-GCN, i.e., Algorithm 2, are (G, TG , ε) = (Gn, IGn , ε)
in line with local partition of any worker n. Moreover, each
pij can be regarded as the probability that an edge from node j
to node i is sampled, and hence the computational complexity
of Algorithm 2 is O(|EGn

|) for worker n.
To alleviate the computation workload brought by our sam-

pling policy, Algorithm 2 in PSC-GCN could be implemented
in a semi-dynamic fashion. That is, the sampling probability

Sampled
Boundary Nodes

Hit

Miss

Remote Worker

Cache Buffer

Features

Cache Map

Fig. 5: Cache workflow.

p is updated every certain iterations (Lines 4-7) to amortize
the sampling complexity and ensure fairly low estimation
error. Consequently, PSC-GCN will always hinge on the latest
probability p to sample subgraph in Line 8.

V. INCLUSION-AWARE FEATURE CACHING

In this section, we elucidate the caching policy design.

A. Workflow of Cache Module

PSC-GCN would iteratively sample a subgraph for neighbor
aggregation and model update. As cross-worker communica-
tion is the major bottleneck in graph sampling, we deploy
a cache on each worker GPU to store a small portion of
boundary nodes, such that their features are directly accessed
without retrieving through LAN if sampled, as shown in Fig. 5.
In particular, our cache module consists of a cache map and
a cache buffer, where the map is designed to record whether
a node is cached in the buffer.

During GCN training, when a worker needs to retrieve
the statistics of sampled boundary nodes, it first checks the
cache map to verify whether they are stored in the buffer, as
described by Line 13 in Algorithm 1. Once the nodes are hit
in cache map, the worker fetches their indices and reads the
features from local cache buffer. Otherwise, their information
is obtained from remote workers. Note that while the cache
map introduces additional overhead, it is still lightweight in
terms of memory consumption considering that mapping 1M
nodes actually requires less than 5MB GPU memory.

B. Cache Update Policy

Caching efficiency is often quantified by the cache hit rate,
i.e., the probability that a boundary node is sampled and also
buffered in local memory. To improve the efficiency, cache
update is desired to be co-designed with the sampling scheme
so as to balance the update overhead and node hit rate, which
however is largely ignored in existing literatures [18], [24]. In
general, dynamically refreshing the cache buffer may promote
the hit rate, but often comes at the cost of high computation
and communication consumptions as GPUs are less efficient
at complex operations. While pure static caching policies may
incur low overhead, they usually can not ensure a favorable
hit rate, wasting the precious GPU memory. To reconcile their
conflicts, we employ a semi-dynamic cache update policy
along with the graph sampling as aforementioned.

Consistent with the neighbor sampling probability in
Eq. (19), the inclusion probability that a boundary node j
is picked by worker n for neighbor aggregation is pj ≜
1 −

∏
i∈Nj∩IGn

(1 − pij). Apparently, boundary nodes with



TABLE II: Test accuracy results.

Method Reddit Ogbn-products Yelp
GraphSAGE 95.03% 76.49% 64.13%
GraphSAINT 96.25% 76.49% 64.62%

Full-graph 97.01% 78.94% 65.12%
PipeGCN 97.07% 79.69% 65.14%

PSC-GCN (τ = 2, ε = 1) 96.96% 79.67% 65.17%
PSC-GCN (τ = 1, ε = 0.1) 97.15% 80.73% 65.33%
PSC-GCN (τ = 2, ε = 0.1) 97.21% 80.84% 65.28%

PSC-GCN (τ = 2, ε = 0.01) 96.80% 75.73% 65.33%

higher inclusion probability will be more likely to be sampled,
implying caching those nodes conditioned on the buffer size
can result in a higher hit rate. Since the sampling probability
will change in a semi-dynamic manner, we synchronize the
cache update cycle accordingly to renew the cache buffer.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of PSC-GCN,
involving the asynchronous training, communication-efficient
sampling, and inclusion-aware caching.

A. Evaluation Setup

1) Platform Setup: We conduct PSC-GCN on a GPU clus-
ter with three physical servers, where each is equipped with
two NVIDIA T4 GPUs (16GB) and 16vCPU cores (64GB).
CPU-GPU and GPU-GPU within a machine are connected
by PCIe3x16, while the servers are inter-linked by LAN with
15Gbps bandwidth. PSC-GCN is implemented with over 3000
lines of Python codes based on Pytorch and DGL. Each worker
trains GCN on a single GPU.

2) Datasets and GCN Models: We mainly use three
datasets to perform the evaluations, i.e., Reddit [1], Ogbn-
products [19], and Yelp [15]. Following the convention, we
leverage a 4-layer GCN model with 256 and 512 hidden units
in each layer on Reddit and Yelp, respectively, and a 3-layer
model with 128 hidden units on Ogbn-products. Besides, the
scaling factor is set to aj = 1.1 for inner nodes and aj = 1
for boundary nodes to distinguish them in the graph sampling.

3) Baselines: For comparisons, we introduce benchmarks
regarding asynchronous, sampling and caching schemes.
• PipeGCN: A one-step asynchronous training algorithm on

full graphs without the neighbor sampling [17].
• GraphSAGE: Random node-wise sampling policy to gener-

ate the node embedding [1].
• GraphSAINT: Sub-graph sampling based inductive learning

method to ensure dense node connections [15].
• PaGraph: Degree-based static feature caching policy [18].

B. Basic Results

First, we show the basic results of PSC-GCN and baselines.
1) Model Accuracy: To verify the performance, we com-

pare the test accuracy of PSC-GCN and benchmarks on Reddit,
Ogbn-product and Yelp in Table II. We can observe that small-
step asynchronous training only results in a negligible accuracy
decline when using full graphs, roughly by 0.05% on Reddit.
Even with graph sampling, PSC-GCN with staleness τ = 1, 2,

TABLE III: Training time (s) per iteration and for convergence.

Method Time: per-iteration and convergence
Reddit Ogbn-products Yelp

GraphSAGE 0.9023 0.7978 0.9749
902.32 279.23 1657.30

Full-graph 1.5974 1.3005 1.8973
1517.53 487.69 2845.95

PipeGCN 1.1434 0.7163 1.238
1257.74 286.52 1858.05

PSC-GCN (τ = 2, ε = 1) 1.0730 0.7043 1.2293
1233.95 281.72 1843.95

PSC-GCN (τ = 1, ε = 0.1) 0.6259 0.3637 0.5496
876.26 163.67 824.40

PSC-GCN (τ = 2, ε = 0.1) 0.6141 0.3416 0.4776
859.74 136.64 716.40

PSC-GCN (τ = 2, ε = 0.01) 0.2521 0.2414 0.4148
302.52 168.98 622.20

and sampling rate ε = 0.1 still achieves a similar performance
to synchronous full-graph training on all datasets.

Sampling rate ε also affects the model accuracy, which
decreases sharply by 5% on Ogbn-products when ε ranges
from 0.1 to 0.01. Nonetheless, the model performance will be
at the same-level as synchronous full-graph training when ε
reaches 0.1, as PSC-GCN (τ = 1, 2, ε = 0.1) even leads to a
higher model accuracy. Besides, PSC-GCN outperforms other
sampling-based benchmarks, with 1%-4% higher accuracy
than GraphSAGE and GraphSAINT on three datasets, since
we can effectively mitigate the embedding estimation error.

2) Training Acceleration: One of the main targets of PSC-
GCN is to expedite GCN training, and hence we present the
per-iteration and convergence time in Table III. Our proposed
PSC-GCN significantly outperforms benchmarks by achieving
4.6-6.3 times per-iteration acceleration compared to vanilla
full-graph scheme, and 2.4-4.5 times compared to PipeGCN
and GraphSAGE (GraphSAINT is unsuitable for distributed
implementation). Compared to one-step asynchronous PSC-
GCN (τ = 1, ε = 0.1), the two-step case (τ = 2) reduces
per-iteration time by 6%-13%. Moreover, the convergence time
verifies that PSC-GCN can speed up training by 3.6-5.0 times,
i.e., reducing wall-clock time for convergence by 72%-80%.

C. Ablation Study

We continue to validate PSC-GCN through ablation study.
1) Asynchronous Training: Fig. 6 illustrates asynchronous

training with a fixed sampling rate 0.1 while various statistics
staleness τ . Although the synchronous case (τ = 0) results
in faster statistical convergence regarding training iterations,
the final test accuracy given different τ would approach a
similar value, i.e., around 97%, 80%, 65% on three datasets,
respectively. That is, small staleness has negligible impact
on model accuracy, but can significantly mitigate the training
time by 33%-38% on Ogbn-products and Yelp, respectively,
suggesting the robustness of PSC-GCN.

2) Graph Sampling: Fig. 7 displays the test accuracy under
different sampling policies and rates, given two-step asyn-
chronization. Notably, our variance-reduction based sampling
leads to a 1.23 times faster convergence than random sampling
in GraphSAGE. Also, we can achieve 0.5%-1.5% higher



(a) Reddit (b) Ogbn-products (c) Yelp
Fig. 6: Comparison results of different asynchronization staleness τ on Reddit, Ogbn-products, and Yelp.

(a) Reddit (b) Ogbn-products (c) Yelp

Fig. 7: Comparison results of sampling polices with different sampling rate ε on Reddit, Ogbn-products and Yelp.

(a) Training time (b) Cache hit rate

Fig. 8: Comparison results of different caching policies.

accuracy under the same sampling rate. Both corroborate the
effectiveness of our proposed sampling policy, making it a
favorable choice for efficient GCN training.

3) Feature Caching: At last, we discuss the caching results
on Reddit (Ogbn-products and Yelp are similar) compared with
random caching and PaGraph, provided 0.1 sampling rate. As
depicted in Fig. 8(a), we can reduce the training time by 10%
(4%) compared to random policy (PaGraph) when buffering
30% boundary nodes, as cross-worker transmission is allevi-
ated. Besides, Fig. 8(b) shows cache hit rate, where we always
outperform baselines with 7%-25% and 3%-17% higher hit,
respectively, i.e., our caching policy is more efficient.

VII. RELATED WORK

GCN training. GCNs have emerged as state-of-the-art ap-
proaches for many graph-related learning tasks [25]. However,
training GCN models are time-consuming due to the high
communication overhead [26]. Considering that real-world
graph can be huge, DistDGL is developed to build graph
models in a distributed manner [27]. To handle full graphs,
Wan et al. design BNS-GCN to randomly sample boundary
nodes, which enhances the GCN training efficiency and scala-
bility [28]. Besides, PipeGCN is proposed to asynchronously
retrieve boundary nodes one-step ahead for communication
mitigation [17]. These works have made great progresses in
distributed GCN training, while the communication is still high
when workers are linked by slow-rate network.

Graph sampling. Sampling a subgraph in centralized or
distributed GCN can reduce the communication and com-
putation workload [1]. To avoid neighbor explosion, layer-
wise sampling is proposed to choose nodes in each layer
conditioned on the top one, so as to allow for a fixed-sized
sampling [29]. Moreover, subgraph-wise sampling is designed
to tackle the connectivity problem encountered by layer-wise
methods [15]. Since gradient variance and error are introduced
by graph sampling, a variance-reduction guided sampling is
characterized for centralized training [30]. Nonetheless, how
to explicitly achieve low embedding estimation error while
catering for the communication cost is still unexplored.

Feature caching. Recent attentions have been paid to
caching node features to reduce the communication cost [24].
PaGraph is a static caching policy that buffers nodes with high
out-degrees to mitigate data fetching time [18]. To improve
cache hit rate, Liu et al. develop a distributed training system
with dynamic caching and graph partition scheme to alleviate
data preparation cost [31]. Furthermore, a two-level caching
policy by using CPU and GPU memory to buffer node features
is proposed in [32], where nodes are dynamically evicted
from local memories. Existing caching policies often work
standalone without a tight co-design with the graph sampling.

VIII. CONCLUSION

In this paper, we propose pipelined PSC-GCN to address
the communication bottleneck in distributed GCN training.
Specifically, we fetch the sampled boundary nodes in an asyn-
chronous manner which can hide the statistics transmission
into local model computation. To alleviate the adverse impact
of asynchronous staleness, we design an efficient sampling
policy to reduce the communication volume and embedding
estimation error. In addition, we enhance graph sampling by
caching a small portion of boundary nodes in local memory,
further optimizing the data preparation time. Real-world exper-
iments show that PSC-GCN outperforms existing benchmarks
by accelerating the training convergence by 3.6-5.0 times.
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