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Abstract—Crowdsourcing is an effective paradigm in human
centric computing for addressing problems by utilizing human
computation power, especially in booming social Internet of
Things (IoT). By leveraging mutual friendship between com-
puting entities (i.e., workers), collaborative tasks can thus be
routed and finally fulfilled by multihop friends with high exper-
tise. However, crowdsourcing in social IoT may reveal the privacy
of task requesters which results in a large dilemma. In this paper,
we focus on designing a multihop routing incentive mechanism
which can also preserve task requester’s privacy. Specifically,
a utility maximization problem under privacy and budget fea-
sibility constraints is formulated. Defining the conditions for
privacy insurance, we give guidelines on how many subtasks
should an entire task be divided into, and analyze the tradeoff
between privacy and task accuracy. To enable efficient crowd-
sourcing task routing in social IoT, we first consider 1-hop
myopic routing case and propose a near-optimal task assign-
ment algorithm with 1/2 approximation ratio for an arbitrary
prior knowledge. We further design multihop payment policy
to establish an equilibrium where workers are motivated to
forward subtasks to their friends with the best expertise. The
extensive simulations validate that our mechanism achieves a
high level of average information gain with modest privacy
guarantee.

Index Terms—Crowdsourcing, incentive mechanism, pri-
vacy preserving, social Internet of Things (IoT), task
assignment.

I. INTRODUCTION

CROWDSOURCING, emerging as a new paradigm to
solve tasks which are difficult for computers, has gain

its popularity at an incredible rate. Traditional crowdsourcing
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systems (e.g., Amazon Mechanical Turk [1] and Yahoo!
Answers [2]) allocate tasks to the public. Because of specific
platforms required, however, such systems are not flexible and
robust enough. If there is something wrong with platforms,
task requesters cannot allocate tasks to workers. Furthermore,
workers may not be reliable due to their unfamiliarity with
task requesters.

Through the social Internet of Things (IoT)
paradigm [3], [4], the social relationship among com-
puting entities (i.e., users or devices) is fortified for efficient
resource utilization and task completion. By introducing
social IoT, an alternative solution is to spread the task to
someone in social IoT who excels in this task, thus expanding
traditional crowdsourcing networks and achieving broader
crowdsourcing application. Crowdsourcing in social IoT has
the following advantages.

1) The advent of social IoT services [5] has aroused peo-
ple’s enthusiasm in making social connections online.
According to the statistics of Facebook [6], the num-
ber of users remaining monthly active on Facebook
has been tremendously growing, reaching 2.2 billion
in 2017. This could be one of the largest networks
in history, which implies great computing capacities if
people share idle resources with friends. For example,
the average number of friends for a Facebook user is
approximately 200, indicating a large of pool of worker
candidates.

2) The social IoT paradigm is organized according to
mutual friendship, where friends have enough incen-
tives to offer their helps in a voluntary manner. Further,
due to workers’ friendship and the large scale of social
IoT, one can easily obtain helps from multiple friends,
without worrying too much about their complicated eco-
nomic incentives of participation (the incentive issues
are discussed in the previous literatures [7], [8], [9]), so
it is also suitable for handling collaborative computing
tasks.

However, how to motivate friends to route tasks efficiently
within fixed budget remains to be a big problem. Moreover,
as it always to be, the task requester may reveal private
information to the crowd or violate copyright while carry-
ing out crowdsourcing. For example, if task requester plans
to ask workers to translate a passage, what can he do with-
out violating reserved copyright hold by the author. If task
requester plans to identify a strange in a picture, how can he
do without revealing personal information? Or task requester
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may allow his 1-hop1 friends to get access to tasks but do not
want multihop friends to see task information, how can he do?
In summary, crowdsourcing and privacy-preserving conflict
inherently, especially in fast-growing social IoT.

To tackle privacy protection in crowdsourcing, there
are mainly two methods, i.e., transformation and divi-
sion. Transformation suggests alterations in task content and
style [10]. For example, if we want to judge whether a person
in a picture is over 50 years old, we would better not ask oth-
ers so directly since it is impolite. To dissemble what we really
want to know, we could ask how old is this person. Division
indicates task segregation [11]. If the task is divided into small
pieces, workers can only get partial information, which facili-
tates preserving task requester’s privacy. For instance, in order
to identify the age of a person in a picture but not to reveal
personal portrait, we could partition the entire picture into sev-
eral parts, and then allocate parts of the image to workers
to identify specific features, such as hair color, skin corruga-
tion, etc. We can evaluate his age from answers submitted by
workers.

In this paper, we mainly focus on the task assignment and
privacy preserving in social IoT, where division is adopted for
task requester’s privacy protection. Previous work like [12]
focused on the tradeoffs between privacy, reliability, and
crowdsourcing cost. But when it comes to social IoT, task
requester’s privacy becomes more susceptible since friends can
get contact with each other. Due to the attention we should
be given to a number of subtasks and it should be divided
into entire task. If the entire task is divided into few subtasks
indicating that each subtask contains more information about
the entire task, there is a high chance that task requester’s
1-hop friends can know the entire task by connections. Yet, if
we divide the entire task into more subtasks, the information
included in all of subtasks may not help you judge the answer
of the entire task. For example, if we only know the hair color
of a person, we cannot judge his age precisely since sickness
can also result in white hair. On the other hand, although more
subtasks indicate high reliability in privacy preserving, the
number of workers assigned to each subtask will be reduced,
further decreasing the accuracy of the entire task.

Our main contributions are highlighted as follows.
1) We propose a novel privacy-preserving incentive mech-

anism for social crowdsourcing, providing a theoretical
basis to settle the dilemma between privacy and task
accuracy. By leveraging mutual friendship, collabora-
tive computing tasks can be routed and finally fulfilled
by multihop friends with high expertise. Specifically,
a utility maximization (UM) problem under requester’s
privacy and budget feasibility constraints is formulated,
where overall service utility is defined as the expected
information gain from observing collected answers.

2) Defining the conditions for privacy insurance, we give
guidelines on how many subtasks should an entire task
be divided into. To make sure requester’s privacy, we

1In social IoT, 1-hop friends refer to the people who have the direct con-
nection with task requester. 2-hop friends refer to the people who have the
direct connection with 1-hop friends of task requester but do not connect to
task requester directly. By analogy, we can get multihop friends.

give the upper bound of the probability of privacy reveal.
The relationship between privacy and task accuracy are
also analyzed.

3) We design 1-hop myopic routing policy and multihop
payment policy for efficient crowdsourcing task routing
in social IoT. In 1-hop routing case, by exploring mono-
tone submodular property, we propose a near-optimal
task assignment algorithm with 1/2 approximation ratio
for an arbitrary prior knowledge. In multihop routing
case, we prove that task requester’s cost will increase
with the length of task forwarding chain, which can
motivate workers to allocate tasks to the friend with the
best expertise in his ego network.

4) With extensive simulation results, we verify that the
proposed mechanism corroborates the theoretical anal-
ysis, and achieves a high level of average information
gain with modest privacy guarantee.

The rest of this paper is organized as follows. We provide
the details of system model in Section II. In Section III,
problem formulation for privacy-preserving incentive mech-
anism is given. To proceed, we first design multihop routing
incentive policy and then conduct privacy-preserving analysis
in Section IV. Finally, simulation, related work, and conclusion
are shown in Sections V–VII, respectively.

II. SYSTEM MODEL

In this section, we will first give an overview of our privacy-
preserving incentive mechanism and then illustrate the details
in the following sections.

A. Service and Network Model

In this paper, we mainly focus on utilizing the social IoT
paradigm to tackle labeling tasks, each of which has one
true answer from L possible labels belonging to the label set
L = {1, 2, . . . , L}. To begin crowdsourcing, the task requester
will first divide a labeling task T into N subtasks in the task
set2 Tsub = {t1, t2, . . . , tN}. Each subtask represents one fea-
ture that characterizes the original labeling task T . The answer
of subtask tn (n ∈ N = {1, 2, . . . , N}) is one of M values
belonging to the feature set M = {1, 2, . . . , M}. Each label in
L can be mapped to a N-dimensional feature vector, indicating
the feature vector can include all information of every label.

The social IoT paradigm is organized according to mutual
friendship, where friends have enough incentives to offer their
helps. Workers (i.e., computing entities) in social IoT are
represented by nodes on a undirected graph G = (V, E),
with the source node denoting task requester. Edges in the
graph represent workers’ friendship, indicating whether a par-
ticular worker can directly route the task to another worker.
In other words, workers are willing to offer helps to others
only if the two corresponding nodes are directly connected

2The division here is adopted for task requester’s privacy protection, just
as above-mentioned. There have been researches on how to automatically
divide a problem using recursive crowdsourcing [13]. This line of research
is orthogonal to this paper. Here, we assume the task division is already
provided.
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Fig. 1. General privacy-preserving incentive mechanism. Top: process of
social crowdsourcing service. Bottom: illustration of a single multihop path
for subtask routing.

in G. Let V0 denote the set of 1-hop friends3 of task
requester, which is defined as task requester’s ego network.
The ego network of 2-hop friends (or equivalently, people who
belongs to task requester’s ego network) is denoted by V1,i,
where i ∈ {1, 2, . . . , |V0|}. By the definition above, the ego
network of k-hop friends can be represented by Vk,i, where
i ∈ {1, 2, . . . , |Vk−1,i|}.

The process of social crowdsourcing service is described as
shown in Fig. 1.

1) The task requester first publishes a task with a fixed
budget on social crowdsourcing platform.4

2) The platform divides the task into subtasks and allocates
them to the selected potential 1-hop friends (by worker
ability) through social IoT paradigm.5

3) Each worker assigned the subtask decides whether to
process it directly or to forward it to a friend in his own
ego network.

4) The platform pays monetary reward to involved workers
according to their efforts.

5) The platform generates the final result and then delivers
it to the requester. In this way, such collaborative com-
puting task, by exploiting workers’ mutual friendship,
can be routed and finally fulfilled by multihop friends
who are capable of subtasks. Here, multihop friends may
be strangers to the requester. Even if this were the case,
multihop routing is essentially performed based on a
set of 1-hop routings, which rely on mutual friendship
among two directly connected workers.

In what follows, we will elaborate on how to enable privacy
preserving and multihop incentive through the implementation
of our mechanism.

B. Crowd Worker Model

Crowd workers vary in ability6 that can be characterized by
a confusion matrix [15], one for each worker in terms of each

3Existing researches mostly rely on social graph G to capture interactions
among friends [3]. It is widely considered that 1-hop friends (directly con-
nected in G) are apart in a distance of 1, and the distance between multihop
friends (indirectly connected in G) is hop number.

4The platform is assumed not to be involved in the reward transfer process
between task requester and workers.

5Suppose friends can be assigned with one and only one subtask initially.
6Here, worker ability is actually given and does not require any evaluation,

which is similar to task accuracy [14]. If there is such a thing to collect these
prerequisite information, that is one-time information gathering before task
allocation begins. Accordingly, this information gathering just adds a constant
time to the entire process, without affecting task routing and payment later.

subtask. Each entry πlm in confusion matrix is the probabil-
ity that the corresponding worker, when given a subtask with
true ans0wer l ∈M, provides an answer m ∈M. Obviously,∑

m∈M πlm = 1 for all l ∈M. We call π = [πlm] ∈ [0, 1]M×M

as the confusion matrix of the worker for that subtask. It is
assumed to be drawn from a distribution D on space of con-
fusion matrices. A simplified version of confusion matrix is
defined in [16]. Specifically, each worker i is given an ability
parameter γi ∈ (0, 1) denoting the probability of providing
the correct answer, and the error probability is assumed to be
evenly distributed. Formally, let yn denote the correct answer
and rin denote the answer from worker i on subtask tn, then

P(rin = l|yn = l) = γi,∀l ∈M

P
(
rin = l′|yn = l

) = 1− γi

M − 1
,∀l, l′ ∈M, l′ �= l. (1)

It is obvious that responses from the worker with greater
γi will lead to larger information gain. For each worker i,
we introduce worker effect denoted by e(γi) to capture the
relationship between his ability parameter γi and submitted
answer’s quality. Intuitively, one desirable effect should effec-
tively reflect how good or how useful a worker’s answer is
for the final prediction of true answers. The simplest measure
of worker effect is directly using the ability parameter, or its
logistic form. That is, e(γi) = γi or e(γi) = log [(γi)/(1− γi)].

C. Privacy-Preserving Model

Assume that only people who are 1-hop friends can share
information with each other. In general, assigning a subtask,
which are only one fraction of entire task, to multihop friends
will not reveal privacy of task requester. However, 1-hop friends
may also have connections with each other. If task requester and
one of his 1-hop friends share too many friends, this 1-hop friend
is more likely to know the entire task by asking other friends,
thereby potentially compromising task requester’s privacy. Let
b denote the minimum number of subtasks which can include
the information of entire task. One desirable property we aim
to achieve is privacy insurance defined in Definition 1.

Definition 1 (Privacy Insurance): The crowdsourc-
ing system can guarantee privacy of task requester if
|V0 ∩ V1,i| < b holds for ∀i ∈ {1, 2, . . . , |V0|}, where | · | is
the cardinality.

In particular, the above privacy insurance constraint is
equivalent to that

max
1≤i≤|V0|

∣
∣V0 ∩ V1,i

∣
∣ < b. (2)

D. Multihop Routing Incentive Model

After task allocation, a worker can either directly finish the
assigned subtask, or forward it to another worker in his ego
network. Repeat this process and then a routing path is formed
finally. Fig. 1 presents an example of such routing path with
the length of K, where the subtask of interest is fulfilled by
Kth worker. Along the routing path, the subtask can thus be
routed to a more capable worker that lies beyond task request’s
ego network.

Our mechanism aims to arrive at an accurate answer infer-
ence, which highly depends on the quality of task finishing.
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Under multihop routing, each worker is expected to submit
inference truthfully or route the task to other worker that can
best refine the inference. In crowdsourcing systems, however,
there is usually no intrinsic value for processing or routing
a particular task. As a result, workers especially for strategic
and self-interested ones, may reluctantly contribute to task fin-
ishing or even if doing so, they may reduce their processing
efforts strategically.

Taking into account workers’ strategic and self-interested
behaviors, we incentivize workers to provide high-quality task
finishing or accurate answer inference. In particular, there are
mainly two ways to motivate workers to contribute to comple-
tion of subtasks. First, workers can get payment by directly
finishing subtasks. Second, workers can still obtain payment
if they forward subtasks to other highly capable workers. Let
Wn denote the set of all workers who contribute to finishing
subtask tn in one of two ways above and deserve to get pay-
ment. To formalize the problem, we introduce payment policy
defined in Definition 2.

Definition 2 (Payment Policy): A payment policy denoted as
ρn : X → R, where X denotes the set containing all possible
sets of associated workers’ efforts toward subtask tn, calculates
the payments to workers based on the collected effort set xn =
{xi

n|i ∈Wn}. We use ρn
i ≥ 0 to denote the payment to worker

i under effort set xn.
The platform announces to workers the payment policy ρn,

which then induces a routing game. In this game, each worker
acts as a player to decide how to respond to the assigned
subtask (processing or routing) by evaluating his own utility
or payment. In practice, the crowdsourcing procedure usually
works under an estimated incentive budget for task requester.
Another desirable property considered is budget feasibility
defined in Definition 2.

Definition 3 (Budget Feasibility): For any subtask tn, n ∈ N ,
a payment policy ρn is budget feasible under collected effort
set xn, if and only if the total payment to workers does not
exceed budget B, i.e.,

∑

i∈Wn

ρn
i ≤ B,∀n ∈ N . (3)

III. PROBLEM FORMULATION

A. Information Gain

Before we continue, let us shed some light on information
gain by undertaking a preliminary step toward developing a
measure of the utility of social crowdsourcing service.

The task requester holds a prior knowledge about subtasks.
Let p0

nm = P
0(tn = m), n ∈ N , m ∈M denote the probability

initially held by task requester that the nth subtask is character-
ized by the mth feature. For subtask tn, task requester’s prior
knowledge is denoted by p0

n = (p0
n1, p0

n2, . . . , p0
nM), where

∑M
m=1 p0

nm = 1. When task requester is unbiased, the prior
knowledge can be simply set as the uniform distribution

P
0(tn = m) = 1

M
,∀n ∈ N , m ∈M. (4)

We use Rn to denote the received responses to subtask tn.
Task requester’s posterior knowledge pn = P

0(tn = m|Rn) can

be calculated according to Bayes decision rule as follows:

P
0(tn = m|Rn) = P

0(tn = m, Rn)

P(Rn)
. (5)

Suppose worker responses for any subtask are independent
given the true answer. We obtain P

0(tn = m, Rn) = P
0(tn =

m)
∏

r∈Rn
P(r|tn = m), where P(r|tn = m) is determined by

the confusion matrix or for simplicity, (1). In particular, the
true label of subtask tn can be inferred as

ŷn = arg max
m∈M

pn. (6)

Formally, every time the platform asks a worker for the
new answer, its goal is to select a set of answers that will
result in the greatest expected decrease in the uncertainty of
label inference. Information theory provides us with a use-
ful criterion for measuring the amount of uncertainty in the
distribution of label predictions, i.e., joint entropy H(pn) =
−∑M

m=1 P(tn = m|Rn) log P(tn = m|Rn). We model the con-
tributions of each worker as a noisy channel, and evaluate the
quality of submitted responses using this metric. When sub-
mitting an answer Rn, the worker contributes IG(Rn) bits in
support of that answer, that is

IG(Rn) = H
(

p0
n

)
− H(pn). (7)

As we receive more contributions from workers, P(tn =
m|Rn) is updated and the joint entropy of subtask tn changes.
The lower tn’s entropy is, the more confident we are in our
prediction of the correct answer.

With these definitions, we can measure the improvement
due to crowdsourcing in social IoT via the information gain
over all subtasks, which can be characterized as

IG =
N∑

n=1

IG(Rn). (8)

Absolute information gain is significantly affected by the
number of workers who submit answers. Hence, we lever-
age the expected information gain per worker (to be specified
later) as a metric for evaluating service utility of social
crowdsourcing.

Intuitively, a larger information gain leads to a smaller
uncertainty, thus increasing inference accuracy of true labels
(i.e., the social crowdsourcing performance is improved), and
vice versa. To illustrate this further, let us consider a simple
case of social crowdsourcing service with task set Tsub = {t1}
and feature set M = {0, 1}. Given the true answer yn = 1,
the confusion matrix of 1-hop friend (i.e., worker 1) is
P(r11 = 1|yn = 1) = 0.5 and P(r11 = 0|yn = 1) = 0.5.
Suppose worker 1 only has two friends (i.e., workers 2 and 3)
with confusion matrix P(r21 = 1|yn = 1) = 0.9 and
P(r21 = 0|yn = 1) = 0.1, and P(r31 = 1|yn = 1) = 0.6 and
P(r31 = 0|yn = 1) = 0.4, respectively. We adopt the simple
form of P

0(tn = m) in (4). If worker 2 is assigned the task, then
we have P

0(t1 = 1, R1) = P
0(t1 = 1)

∏
r∈R1

P(r|t1 = 1) =
0.225, and P

0(t1 = 0, R1) = P
0(t1 = 0)

∏
r∈R1

P(r|t1 = 0) =
0.025. The information gain that worker 2 contributes is
IG = H(p0

1)−H(p1) = 0.314. Similarly, we can obtain worker
3’s contribution IG = 0.276. As a consequence, worker 2 who
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contributes more to improving information gain has high pri-
ority (or service utility) since high inference accuracy of true
labels will be achieved.

B. Utility Maximization Problem

The objective of our mechanism is to improve overall
service performance, by reasonably dividing the task into sub-
tasks and routing them to workers. We assumed that the social
crowdsourcing platform is authorized to manage task divi-
sion/allocation and payment allocation. In this process, any
worker serves as either the final finisher to process the assigned
subtask directly or an intermediate router to publicize the sub-
task in his own ego network. Under the proposed mechanism,
we try to address the following problems.

1) How to divide task requester’s task into subtasks and
allocate them to 1-hop friends for a guaranteed privacy?

2) From the perspective of workers in multihop routing pro-
cess, how to respond to assigned subtasks (i.e., processing or
routing) with what payment allocation for high task accuracy?

In the context of social crowdsourcing, the key to solv-
ing the above problems is to motivate workers to leverage
friendship for task completion with high accuracy and privacy
insurance. Next, we will formally characterize these problems.

To evaluate performance of social crowdsourcing service
subscribed by task requester (or equivalently, task-worker
assignment), the mechanism actually allows the use of vari-
ous utility function to optimize for. One natural utility function
choice is the expected information gain from a set of collected
worker responses or efforts, which is defined as

U(W) = E[IG] =
N∑

n=1

H
(

p0
n

)
− H

(
p0

n|Wn

)
(9)

where Wn consists of all workers assigned to subtask tn and
{Wn}Nn=1 = W . Let RWn denote all responses received from
worker set Wn. The conditional entropy H(p0

n|Wn) illustrates
the expected uncertainty of the distribution of label predictions
after receiving workers’ answers. It can be calculated as
H(p0

n|Wn) = −∑RWn∈Rn

∑M
m=1 P(tn = m, RWn) log P(tn =

m|RWn), where Rn is the domain of RWn that consists of all
possibilities.

In our proposed mechanism, the privacy-preserving and
multihop incentive are enabled based on “assignment deci-
sion,” maximizing the overall service utility while guaran-
teeing privacy insurance and budget feasibility constraints.
Accordingly, the UM problem is to find an optimal task-worker
assignment W∗ = {W∗n |n ∈ {1, 2, . . . , N∗}} that

Max
W

U(W) (10)

s.t.
N⋃

n=1

Wn =W (11)

Wn

⋂
Wn′ = ∅,∀n �= n′ (12)

max
1≤i≤|V0|

∣
∣V0 ∩ V1,i

∣
∣ < b (13)

∑

i∈Wn

ρn
i ≤ B,∀n ∈ N . (14)

Specifically, constraints (11) and (12) ensure that each worker
can be assigned to one and only one subtask, which is of
vital importance for privacy preserving. Intuitively, the prob-
ability that requester’s privacy can be revealed increases with
the amount of available information of entire task captured
from one subtask. If these two constraints focus on individ-
ual perspective, then constraint (13) in essence, highlights
the risk that privacy is revealed through information sharing
between friends. Constraint (14) indicates that the total pay-
ment to workers must be within requester’s incentive budget,
guaranteeing the mechanism can be implemented in practice.

Remark: While our explicit objective is to maximize the
expected information gain from collected worker efforts, the
formulation equivalently minimizes the expected uncertainty
of the distribution of label predictions, which serves as the
basis for inference accuracy of true labels. Besides, we would
like to notice that the assignment decision W actually involves
both task division N and 1-hop allocation/multihop routing
{Wn}Nn=1, where the latter determines how payment policy ρn

shall be applied in terms of subtask tn under budget constraint.
All of these result in accordance with two aforementioned
primal problems of interest and manifest themselves in the
conflict between task accuracy and requester’s privacy.

C. Analysis

Recall the objective of UM problem in (10). It is obvious
that the entropy of prior knowledge H(p0

n) is a fixed value
and the service utility depends solely on H(p0

n|Wn). Under
the assumption of unbiased prior knowledge of subtasks and
uniformly distributed error probabilities, Lemma 1 states that
different assignment policies vary in expected information gain
of one specific subtask, but lead to the same expectation of
overall information gain.

Lemma 1: Given the independence of workers’ responses
and unbiased prior knowledge of subtasks, we can obtain

U(W) =
N∑

n=1

∑

in∈Wn

e
(
γin

)
(15)

where to best measure worker effects on information gain
U(W), e(·) takes the following form:

e
(
γin

) = log m+ γin

M
log γin +

1− γin

M
log

1− γin

M − 1
. (16)

Proof: See Appendix A.
Things become different and more complicated when either

the prior knowledge is nonuniformly distributed, or the gen-
eral confusion matrix is used to characterize worker ability.
As a result, different assignments always lead to different
expectations of overall information gain.

In fact, finding the optimal assignment W∗ = {W∗n }N∗n=1
that maximizes an arbitrary U(W) is more like a known
Partition Problem which has been proved to be NP-hard [16].
The Partition Problem asks whether a given set Z of posi-
tive integers can be divided into two subsets Z1 and Z2 such
that

∑
z∈Z1

z =∑z∈Z2
z. We can construct an instance of our

assignment problem to solve such Partition Problem. For every
integer z ∈ Z , we define a corresponding worker iz ∈ V with
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Fig. 2. Proof of NP-hardness.

ability parameter γiz = z/max{z : z ∈ Z}. We also define two
subtasks t1 and t2, and assign them to the predefined workers.
We introduce a binary decision variable In,i to characterize
task assignment strategy. Specifically, In,i = 1 represents that
worker i has been assigned subtask tn, and In,i = 0 otherwise.
Under such task assignment strategy, the assignment set can
thus be characterized by Wn = {i|In,i = 1,∀i}. As shown in
Fig. 2, two subtasks t1 and t2 are assigned to the correspond-
ing workers with allocation W1 = {i1, ik} and W2 = {i2}.
Let u(Wn) = log(

∑
i∈Wn

γi + 1) and define service utility as
U(W) =∑n u(Wn). With what has been described above, we
may safely conclude that the answer to the original Partition
Problem is positive if and only if u(W∗1 ) = u(W∗2 ), where
{W∗n } denotes the optimal assignment for each subtask tn in
assignment problem constructed above. We consider it from
the following two aspects.

1) Suppose W∗ is an optimal solution to assignment
problem such that u(W∗1 ) = u(W∗2 ). Then the sums
of worker ability for each subtask are equal. Since
γiz = z/max{z : z ∈ Z}, we have

∑
x∈Z1

z =∑z∈Z2
z;

2) Suppose there exist two subsets of Z , Z1 and Z2, such
that

∑
z∈Z1

z =∑z∈Z2
z. Consider the contradiction that

under optimal solution W∗, these two subtasks are allo-
cated to two sets of workers with different sums of
ability. According to the monotonicity and submodular-
ity (to be discussed later), U(W) can be improved by
making sums of worker ability equal, i.e., W∗ is subop-
timal, which further results in a contradiction. Therefore,
finding the optimal assignment W∗ that maximizes
U(W) is NP-hard as well.

D. Our Solution

Given the NP-hardness of UM problem, we turn to approx-
imation algorithm to achieve computation-efficiency balance.
Before proceeding further, let us grasp the basics of monotone
submodular function.

Definition 3 (Monotone Submodular Function): Let � be
a finite set. For any X ⊆ Y ⊆ � and x ∈ �/Y , a func-
tion: f : 2� �→ R is submodular if and only if f (X ∪ {x}) −
f (X) ≥ f (Y ∪ {x}) − f (Y), and it is monotonic if and only if
f (X) ≤ f (Y).

The utility function U(W) defined in (11) falls in the fam-
ily of monotone submodular functions. Please refer to [17]
for details of the proof that expected information gain (cor-
responds to U(W) here) is submodular and nondecreasing.
With such diminishing returns property in place, we naturally
set out to explore an efficient approximate algorithm to find

the optimal assignment for UM problem with a theoretically
acceptable approximation rate.

Recall the optimal task-worker assignment W∗ = {W∗n |n ∈
{1, 2, . . . , N∗}}. Actually, to find such assignment involves
a combination of task division, 1-hop task allocation, and
multihop incentive processes. The term N∗ suggests the
optimal number of subtasks should be divided to, i.e., task-
subtask assignment. While the term W∗n captures the optimal
allocation among workers for each subtask tn, i.e., subtask-
worker assignment, which manifests itself in two ways. One
is how to allocate subtasks to 1-hop friends in requester’s
ego network, which together with task division, contributes
to the promise of privacy protection for task requester. Denote
the optimal set of selected 1-hop friends as W1-hop = {i|i ∈
W∗ ∩V0}, where each friend can be assigned to one and only
one subtask. The other is that in multihop routing originated
from 1-hop friends, how to forward subtasks to high-ability
workers for maximal service efficiency, whose realization ben-
efits from the payment policy and leveraged mutual friendship
potentials.

In the proposed mechanism, multihop routing incentive pol-
icy actually depends on privacy-preserving policy. Specifically,
task division determines how many multihop routing paths
exist and 1-hop allocation determines which 1-hop friend
each routing path originates from. In essence, our privacy-
preserving incentive mechanism is based on a two-stage
decision problem. In the first stage, the platform establishes
task division and 1-hop allocation strategies to guarantee
requester’s privacy, and with this information, then makes
multihop payment strategy to stimulate workers’ willingness to
forward subtasks to high-ability ones under incentive budget.
Therefore, one feasible solution is backward induction, i.e.,
first to convert it to a pure payment allocation problem, and
on that basis, to address the combinatorial problem involving
task division and allocation.

IV. PRIVACY-PRESERVING INCENTIVE MECHANISM

A. Multihop Routing Incentive Policy

We first consider multihop payment allocation in the second
stage, where total number of subtasks N and the set of selected
1-hop friends W1-hop are taken as given parameters. Moreover,
equilibrium strategy of workers are studied as well.

As mentioned previously, the true answer of subtask tn
are inferred as ŷn = arg maxm∈M pn. Enabling multihop task
routing with high quality and efficiency requires mechanisms
that will incentivize workers to both truthfully report posterior
probabilities and to route subtasks to multihop friends who can
best improve answer inference. Due to the attention it should
be given to the worker heterogeneity in ability and sociabil-
ity, especially under the limited incentive budget. Intuitively,
workers with high ability or strong sociability are more likely
to receive target subtasks. Suppose the confusion matrices are
common knowledge between requester’s 1-hop friends. With
payment allocation in place, 1-hop friends would like to for-
ward subtasks to workers with high ability parameters who
may exist outside requester’s ego network. In this way, both
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Algorithm 1: 1-HopGreedy
Input: 1-hop friends V0 = {1, 2, . . . , |V0|}, ability

parameters {γi}|V0|
i=1 , prior P

0(tn) over subtasks
{tn}Nn=1

Output: Assignment W ← {Wn}Nn=1
1 Initialize Wn ← ∅, n = 1, 2 . . . , N, W ← {Wn}Nn=1
2 for i ∈ V0 sorted by key=e(γi) do
3 for n = 1 : N do
4 �Hn ← H(P0(tn)|W)− H(P0(tn)|W, i

⋃
Wn)

5 n∗ ← argmax�Hn

6 Wn∗ ←Wn∗
⋃

i
7 W ← {Wn}Nn=1

workers who are experts and workers who are knowledgeable
about the expertise of others will get rewarded.

1) 1-Hop Myopic Routing: Before addressing multihop
routing problem, let us look at how to efficiently derive the
optimal assignment in the case of allocation horizon K = 1,
i.e., 1-hop myopic routing. Different from multihop rout-
ing of interest, task requester allocates subtasks to 1-hop
friends in the set W1-hop and requires their direct responses
instead of routing subtasks to other workers. In this set-
ting, the expected overall information gain varies if the prior
knowledge is nonuniform distribution. We propose a greedy
algorithm in Algorithm 1-HOPGREEDY that is, guaranteed
with a approximation ratio of (1/2) within polynomial time
complexity.

Theorem 1: Let W∗ denote the optimal assignment
that maximizes expected information gain, and W denote
the assignment found by Algorithm 1-HOPGREEDY. Then
U(W) ≥ (1/2)U(W∗).

Proof: See Appendix B.
As for time complexity of Algorithm 1-HOPGREEDY, the

sorting operation takes |V0| log |V0| time to work out the 1-hop
friend sequence in order of descending ability parameter. The
subsequent outer loop runs |V0| times for every friend and
the inner loop runs N times for every subtask. Therefore,
the overall time complexity of Algorithm 1-HOPGREEDY is
|V0| log |V0| + N|V0| = |V0|(log |V0| + N).

2) Multihop Payment Allocation: In multihop task routing,
any worker can choose either to finish the assigned subtask
directly or to forward it to friends in his ego-network. If
choosing the latter, he will use [α/(1 + α)] ratio of total
money as his rewards and use the left [1/(1 + α)] as the
rewards to motivate his friends, where α ∈ (0, 1) denot-
ing the payment allocation ratio, is a constant set by the
platform.

Inspired by [18] and [19], we adopt the routing scoring rule
in multihop routing incentive policy to incentivize accurate
inference, along with the effective routing decisions. Consider
a routing path of length K (excluding the requester) for any
subtask tn. Under such routing scoring rule, the ith worker
gets the payment of

ρn
i = (1− α)e(γi)+ αe(γi+1)− e(γi−1) (17)

where i ∈ {1, 2, . . . , K− 1} and γi captures the ability param-
eter of the ith worker. To facilitate illustration, we assume
γ0 = 0. We would like to notice that the ith worker’s pay-
ment is based on the incremental value he provides for refining
answer inference (or equivalently, the increment of task fin-
ishing’s quality he contributes to), which is measured by his
report and the report of the worker he routes the subtask
to. The final worker on the path does not route, and is paid
cK = e(γK)− e(γK−1).

Along any single multihop routing path, the total payment
for all involved workers can be characterized as

e(γK)− e(γK−1)+
K−1∑

i=1

(1− α)e(γi)+ αe(γi+1)− e(γi−1)

= e(γK)− e(γK−1)+ α(e(γK)− e(γ1))+ e(γK−1)

= (1+ α)e(γK)− αe(γ1). (18)

According to such payment rule, a worker with ability
parameter γ will be paid directly with e(γ ) in 1-hop routing
case. While in multihop routing, task requester needs to totally
pay (1+α)e(γK = γ )−αe(γ1) for all workers involved in the
task-forwarding chain, to reach the worker who has the same
ability parameter γ but lies beyond his ego network. Hence,
compared with 1-hop routing, task requester has an extra pay-
ment (1+ α)e(γK = γ )− αe(γ1)− e(γ ) = α(e(γK)− e(γ1))

for one single multihop routing path.
Let us take a closer look at how multihop payment alloca-

tion and total payment vary with routing path length. Imagine
that in one task-forwarding chain, the k-hop friend finishes
the subtask by himself and get paid by ck = e(γk)− e(γk−1).
Then the (k− 1)-hop friend who forward this subtask to him
can get the reward αck. For the (k − 2)-hop friend, he can
get reward as α(αck + ck) = (1+ α)αck. Using mathematical
induction, it is easy for us to derive that for any i-hop friend in
the task-forwarding chain, the reward is αck(1+ α)k−1−i. The
specific proof details are omitted for simplicity. Obviously, for
any two workers (the i-hop and j-hop friends) who contribute
to such multihop routing, the i-hop friend will be allocated
more payment than the j-hop one if i < j ≤ k.

With the above payment allocation in place, we can derive
the total payment for task requester to motivate his correspond-
ing 1-hop friend.

Lemma 2: If one of task requester’s 1-hop friends plans
to find the k-hop friend with payment ck who can finish the
subtask, the least total payment is ck(1+ α)k−1, where ck =
e(γk)− e(γk−1).

Proof: See Appendix C.
Remark: Intuitively, for any i-hop friend in the task-

forwarding chain, the assigned subtask will be forwarded
further only if there exists one friend with higher ability in
his ego network, i.e., e(γi+1) > e(γI),∀i ∈ {1, 2, . . . , k}.
According to Lemma 2, we observe that the total payment
will increase exponentially with increase of routing path length
since ck > 0. It is suggested that the subtask cannot be routed
by many friends, especially under budget feasibility constraint,
i.e., ck(1+ α)k−1 ≤ B. Actually, in real social IoT, the aver-
age degree of separation between two random Twitter users is
3.43 [20]. It indicates that in our multihop task routing, the
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term K for K-hop friend who finishes the subtask by himself
is generally less than 4. On the other hand, the forwarding
process may be infinite if no worker is willing to fulfill the
subtask, making no one can get payment or reward. Hence, in
order to get rewards, workers will always to seek friends with
the best expertise in their ego networks to finish subtasks since
the payment paid to potential experts decreases exponentially.

3) Equilibrium Strategy of Workers: Having introduced the
multihop routing scoring rule of interest, we conduct equi-
librium analysis of the associated routing game. Consider the
case where network structure is common knowledge and actual
answer realizations are still assumed private. Intuitively, the
routing scoring rule has an effect on workers’ routing decisions
in equilibrium, which in turn affect how much information can
be aggregated. Since the strictly proper scoring rule aims to
incentivize accurate reports, a worker’s payment is positive if
and only if he can improve inference accuracy. To formally
establish the connection between worker effect and routing
decision, we have the following equilibrium result.

Theorem 2: Consider a routing game in which workers are
risk neutral. For the kth worker on the routing path of sub-
task tn, let Vk

n denote the set of workers in this ego network
who have not yet been assigned to tn. Under the proposed
multihop routing rule, it is a Bayesian Nash equilibrium for
the kth worker to finish tn by himself if e(γk) ≥ maxw∈Vk

n
e(γw),

or to forward tn to the next worker in his ego network
who has the maximum effect e(γk+1) = maxw∈Vk

n
e(γw) if

e(γk) < maxw∈Vk
n
e(γw)

Proof: See Appendix D.
Given task division and allocation among 1-hop friends,

the optimal multihop routing can route subtasks through ego
network topology, and seek for potential workers with an abil-
ity as high as possible for each subtask, enabling high-quality
task finishing. Accordingly, the expected worker effect, or
rather inference accuracy, is strictly increasing in the length
of a routing path.

B. Privacy-Preserving Policy

With the payment allocation information, the goal of the
first stage is to determine the optimal task division and 1-hop
friend selection to best ensure requester’s privacy. Specifically,
we first show how many subtasks should be divided into so as
to avoid mapping conflict, and then illustrate how to allocate
subtasks to 1-hop friends in requester’s ego network while
guaranteeing his privacy. After that we analyze the tradeoff
between answer accuracy and individual privacy.

1) Task Division: Consider a typical crowdsourcing system
with N subtasks and M features, where each subtask has one
true answer from L labels. The probability of no mapping
conflict can be formally characterized as

P̄(M, N;L) = CL
MN

MNL
. (19)

Intuitively speaking, the more number of workers assigned to
each subtask is, the more accurate each subtask would be.
However, the increase in number of workers to one subtask
indicates the decrease in number of subtasks, which comes the
issue of mapping conflict. For example, if we only use color

of eyes and shape of face in facial recognition, it may cause
plenty of mapping conflicts since many people can share two
same features. Consequently, it may result in inefficient task
completion due to small information gain. On the other hand,
with the decreased number of subtasks, each subtask is likely
to hold much more information of the entire task, causing the
leakage of requester’s privacy.

In addition to task division, the occurrence of mapping con-
flicts highly depends on how task answer is distributed. To
capture the impact of task answer distribution, we use Fu(x)
to denote the cumulative distribution function for number of
subtasks when the conflict first occurs in uniform distribution
and use Fa(x) to denote that in asymmetrical distribution. We
first show a useful lemma for no mapping conflict analysis in
case of uniform task answer distribution.

Lemma 3: When task answer is uniformly mapped to the
feature space, the probability of no mapping conflict satisfies

P̄(M, N;L) > e−L2/MN 1+ O
(
1/MN

)

1+ O
(
1/MN − L

) . (20)

Proof: See Appendix E.
According to Lemma 3, to guarantee no mapping conflict,

the number of subtasks should be larger than 2logML if the
answer is uniformly distributed in feature space. We would
like to notice that the issue of mapping conflicts in uniform
distribution is called as Birthday Problem. According to the
conclusion in [21], we obtain the probability of mapping con-
flicts in uniform distribution (i.e., birthday surprise) is larger
than that in asymmetrical distribution. That is, for ∀x ∈ N

+,
Fu(x) < Fa(x). Therefore, if task answer is asymmetrically
mapped to feature space, the number of subtasks should be
even larger than 2logML.

2) 1-Hop Allocation: Given the number of divided subtasks
N, the next is to determine how to allocate subtasks among
requester’s 1-hop friends. Such 1-hop allocation decision
together with task division constitutes the major privacy-
preserving strategies. In particular, if task division specifies
the lower bound of number of subtasks (i.e., worst case for
privacy insurance), then surely 1-hop allocation decision cap-
tures the upper bound of privacy-preserving probability given
subtask number N (i.e., best-case for privacy insurance).

Recall that privacy insurance constraint is defined on b,
i.e., the minimum number of subtasks which can include the
information of entire task. 1-hop task allocation is, in essence,
similar to coupon collector’s problem [22]. Let S denote the
number of friends who have b different subtasks, and si denote
the number of friends needed to have the ith subtask after i−1
subtasks. The probability to have the ith subtask after i−1 sub-
tasks is [(n− i+1)/n] with expectation E(si) = [n/(n− i+1)].
Thus, the expectation number of friends who have b different
subtasks in 1-hop friend’s ego network is

E(S) =
b∑

i=1

E(si)

=
b∑

i=1

n

n− i+ 1
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= n
b∑

i=1

1

n− i+ 1

= n ln
n

n− b
. (21)

Consider a special case. If we have to possess N subtasks
that we can know the information of entire task, then the
expectation number is N ln N. It is obvious that task requester’s
privacy cannot be guaranteed if his ego network is the subset
of one 1-hop friend’s ego network.

By Definition 1, to calculate the probability of privacy
preserving of task requester, we need to calculate the prob-
ability that the number of types of accessible subtasks is less
than b for 1-hop friends who share the most friends with task
requester. On the basis of this, we can derive the following
privacy-preserving probability for the proposed mechanism.

Lemma 4: If the following condition satisfies:

max
1≤i≤|V0|

∣
∣V0 ∩ V1,i

∣
∣ = cn ln

n

n− b
(22)

where c is a constant, and the probability of privacy preserving
of task requester is less than 1− (n/b) ln(n/n− b).

Proof: See Appendix F.
Using Chernoff Bound, we will get a tighter upper bound.
Theorem 3: For any ε > 0

P

(

|S− μ| > n− b+ 1

n
εμ

)

≤ exp

(

− με2

2+ ε

)

(23)

where μ = n ln(n/n− b).
Proof: See Appendix G.

Such exponentially decreasing bound is much tighter than
the bound derived by Lemma 4. By Theorem 3, in order to
increase the probability of requester’s privacy preserving, we
need to divide more types of subtasks to 1-hop friends.

3) Tradeoff Between Accuracy and Privacy: Theorem 3
states that to ensure task requester’s privacy, large N should be
utilized. Intuitively speaking, however, large N will decrease
the average number of 1-hop friends assigned to the same
subtask, which we call as task redundancy. The reduce in
task redundancy will have a negative influence on answer
accuracy. Therefore, there exists a tradeoff between individual
privacy and answer accuracy. The following theorem shows
the relationship between accuracy and redundancy.

Theorem 4: To achieve error probability less than ε, the task
redundancy should be scaled as

|V0|
N
= O

(

M log
M

ε

)

. (24)

Proof: See Appendix H.
According to Theorem 4, if the number of types of subtask

N is large, to guarantee error probability is less than ε, the
number of labels for each subtask should be decreased. Since
M ≥ 2, N cannot be increased infinitely.

C. Discussions

1) Discussions About Varying Ability Case: This paper
focuses on utilizing the social IoT paradigm to tackle label-
ing tasks. Existing researches to labeling tasks mostly make

a simplifying assumption that worker ability (or confusion
matrix) is given [15]. Chances are, however, that worker abil-
ity may experience changes due to some realistic factors, such
as limited resources. Such dynamic changes manifest in task
accuracy that it can provide. A large body of literature was
dedicated to the interactions between ability and accuracy [23].
In particular, workers with high ability usually provide more
accurate results, and high accuracy of service offering can
also contribute to worker ability. It is worth in-depth study on
routing incentives with varying worker ability. Much attention
should be given to how to model the positive feedback between
ability and accuracy, and how to develop privacy-preserving
incentive mechanism taking varying ability into account.

2) Discussions About Multirequester Case: In our mech-
anism, the entire task is divided into multiple subtasks and
friends are motivated to route each of them efficiently, thus
achieving a tradeoff between privacy and accuracy. Actually,
our analysis is based on the single requester case, where each
worker is assumed to finish at most one subtask.7 However,
our model can be applied to study the multirequester case.
On the one hand, when each worker responses at most one
subtask, the routing process for all subtasks is independent
of each other. Essentially, the multirequester scenario can be
regarded as the single requester case with much more subtasks
routed among social IoT. On the other hand, consider the case
where each worker can response multiple subtasks. Given infi-
nite resources for each worker, the multirequester scenario is
actually a set of single requester cases, each of which is inde-
pendent of each other. But when workers are limited by finite
resources, they can only choose part of subtasks to response,
i.e., different subtasks are tightly coupled together. Notice that
a full analysis of task coupling effect under limited worker
resources is out of the scope of this paper. It surely will be
an interesting future work to study routing incentives with
coupling task response.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to validate
the theoretical analysis above. We consolidate the effectiveness
of multihop routing and show the expected number of friends
which will reveal the privacy of task requester.

A. Simulation Setup

Consider the realistic data set from Facebook [24] to rep-
resent the social IoT paradigm. The data we obtained are
composed by ten worker’s ego networks which partially over-
lap with each other. Notice that the network model of interest
is an indirected graph, where the edge represents the social
relationship between two workers.

As for possible answers to subtasks, we set the fixed
number of values in the feature set as M = 4. Unless oth-
erwise specified, we suppose the number of subtasks N = 10
and the minimum number of subtasks including the entire
task information b are uniformly distributed in [5, 8]. There

7The allocation issue regarding one-to-one mapping between workers and
tasks has been intensively studied in the literatures [15], [16]. Hence, it is
reasonable to assume each worker can finish at most one subtask.
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Fig. 3. Average information gain with a varying redundancy.

TABLE I
RUNNING TIME FOR THE PROPOSED ASSIGNMENT

VERSUS BASELINE ALGORITHMS

are |V0| workers in the task requester’s ego network. The
ratio [(|V0|)/N] is referred to as task redundancy. We gen-
erate worker ability parameters γi from a hyper-parameter
ai ∈ (0,∞) according to the following function adapted
from [17]:

γi = M − 1

M

(
1

M − 1
+
(

1

2

) 1
ai

)

(25)

where γi ∈ ((1/M), 1) monotonically increases with ai.
The hyper-parameters are drawn from exponential distribution
f (x; λ) = λe−λx, x ≥ 0. The expectation μ = (1/λ) can be
viewed as the overall quality of workers. Besides, each task
requester will randomly impose a budget constraint within
[3, 6]. The payment allocation ratio α follows the uniform
distribution within [0.4, 0.6].

We compare the proposed privacy-preserving incentive
mechanism with two baseline algorithms.

1) Random Routing [25]: Workers are randomly selected
into the target task-worker assignment W under the con-
straints in 1-hop routing (denoted by 1-HOPRANDOM).

2) Brute-Force Routing [26]: Tasks are assigned to work-
ers by brute-force search under the constraints in 1-hop
routing (denoted by 1-HOPOPTIMAL).

B. Results for Multihop Routing Incentive

1) 1-Hop Myopic Routing: In the scenario of 1-hop myopic
routing, we illustrate the performance comparison of average
information gain and running time per subtask.

We first plot the average information gain per subtask
with task redundancy [(|V0|)/N] varying from 3 to 24 with
an interval 3 in Fig. 3. Intuitively, the larger task redun-
dancy is, the more accurate each subtask would be. We
can see that both our proposed assignment 1-HOPGREEDY

and 1-HOPRANDOM achieve higher information gain as task
redundancy increases, and ours is more superior. For better
comparison, we also show the results for 1-HOPOPTIMAL as
an upper bound of average information gain. The difference
between the average information gain achieved by ours and

Fig. 4. Average information gain with and without multihop incentive.

Fig. 5. Payment allocation with respect to routing path length.

Fig. 6. Total payment with respect to routing path length.

the best achievable level is small, which is in accordance with
our theoretical analysis.

Table I presents that these algorithms share different aver-
age running time. While 1-HOPOPTIMAL is very slow due
to the NP-hardness of the problem, the other two solutions
are relatively fast. Combining with Fig. 3, we observe that
1-HOPGREEDY provides a good tradeoff between performance
and complexity, which serves as a near-optimal average
information gain with very low running time.

2) Multihop Routing: By exploiting mutual friendship
between workers, our multihop routing incentive mechanism
is developed under the strictly multihop routing scoring rule.
To testify the performance of our multihop routing incen-
tive policy, we next compare the average information gain in
1-hop routing and multihop routing, where workers’ ability
parameters are generated in the same way for the former case.

1) 1-hop Routing: Task requester’s 1-hop friends finish
subtasks by directly providing their responses.

2) Multihop Routing: Each worker forwards the assigned
subtask to the friend with the highest effort in his ego
network so that his effort is the highest.

The number of total workers in the graph |V| is set as
[(|V|)/(|V0|)] = [(|V0|)/N]. We generate a random graph with
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Fig. 7. Distribution of number of friends who have b different subtasks when the total number of subtasks N = 100. (a) b = 20. (b) b = 50. (c) b = 80.

each node representing a worker and each edge representing
a friendship. From Fig. 4, we observe that as task redun-
dancy increases, the average information gain under these two
mechanisms increases and multihop routing achieves the high-
est information gain. Compared to 1-hop routing, multihop
routing would be more promising in exploiting collaborative
ability and sociability, in that it can route tasks to more capa-
ble workers lying beyond requester’s ego network. Especially
when high answer accuracy is guaranteed, the benefits of
multihop routing are more likely to achieve. This explains why
the gap between them becomes larger as [(|V0|)/N] increases.

Multihop routing cannot completely exert its functions with-
out effective payment-based incentive policy. Fig. 5 illustrates
how payment allocation changes with respect to routing path
length. Actually, the i-hop friend’s payment is based on the
incremental quality he provides for refining answer infer-
ence. Hence, the payment paid to potential experts decreases
exponentially as the routing path length increases, which is
the premise of guaranteeing the feasibility of multihop rout-
ing. With such payment allocation in place, we go further
to investigate the influence of routing path length on the total
payment for task requester to motivate his 1-hop friends. From
Fig. 6, we can see that the overall trend in total payment is
increasing slightly in terms of routing path length. Combining
the performance comparison results in Fig. 4, Fig. 6 further
demonstrates the potential benefits of multihop routing incen-
tive policy. That is, multihop routing can greatly enhance the
utility of social crowdsourcing service, but does not make
much difference in total payment.

C. Results for Privacy Preserving

In the section, we first evaluate the distribution of number
of friends who have b different subtasks when b varies. From
Fig. 7, we observe that when b is larger, the distribution is
more divergent. Intuitively speaking, since collecting each dif-
ferent subtask is an independent process, so the total variance
is the sum of that of each process. Hence, larger b indicates
larger variance. Furthermore, the distribution of number of
friends is around the expectation number which validates the
correctness of Lemma 4.

We further conduct experiments to consolidate the conclu-
sion of Lemma 4 as shown in Fig. 8. We set the total number
of subtasks N = 100. Each data point in the following simula-
tions is derived from 10 000 experiments. It can be obviously

Fig. 8. Average (expected) number of friends who have b different subtasks
when the total number of subtasks N = 100.

observed that the average (expected) number of friends who
have b different subtasks increases faster as b becomes larger
because it becomes more difficult to collect the last few sub-
tasks. As illustrated in Fig. 8, the experimental value fits well
with the theoretical value.

VI. RELATED WORK

In this section, we briefly highlight three key desirable
properties of social crowdsourcing.

A. Task Assignment

In the seminal paper of crowdsourcing paradigm [15], [27],
Karger et al. constructed a bipartite graph to allocate labeling
tasks and infer true labels with iterative learning algorithm and
low-rank matrix approximation. Later, some adaptive assign-
ment approaches were put forward with the assumption that
requester can observe the answer and allocate tasks to one
worker at a time [28], [29], or wait for a worker to com-
plete all his tasks before moving on to the next worker [30].
Li et al. [16] first discovered the best workers and lever-
aged them exclusively. With the aim of maximizing task
coverage while minimizing incentive cost, Wang et al. [31]
considered how to assign crowdsourcing tasks with multiple
spatio-temporal constraints to workers. Wang et al. [32]
integrated participatory-mode and opportunistic-mode crowd-
sourcing in a two-phased hybrid task allocation framework
called HyTasker, which jointly optimizes them under incen-
tive budget constraint. Cosley et al. [33] proposed SuggestBot
to perform task routing in Wikipedia, whose goal is to identify
a single target node quickly through local routing decisions.
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While such single-target task differs from the task routing
problem we seek to solve, its results provide theoretical
and experimental supports for the prospect that local rout-
ing decisions may have positive effect on global performance.
However, these approaches have limited efficiency to address
the task assignment issue in social IoT. In particular, mutual
friendship among workers can often be exploited to seek work-
ers with the highest ability, which is vital to guaranteeing
high-quality task finishing.

B. Privacy

In this paper, we built a connection between privacy
preserving and task assignment [12]. By exploring the hetero-
geneity of user privacy degree requirement, Yang et al. [34]
designed incentive mechanisms to motivate users to assist oth-
ers achieving k-anonymity location privacy. Koh et al. [35]
proposed a privacy-aware incentive scheme that allows work-
ers to specify their location privacy requirements and improves
the spatial coverage of collected dataset. Yuan et al. [36]
developed a grid-based privacy-preserving framework for spa-
tial crowdsourcing, taking into account both location privacy
and content privacy of tasks. Han et al. [37] first proposed dif-
ferentially private and budget-limited mechanisms for mobile
crowdsourcing with provable performance bounds. However,
currently, existing privacy protection works typically sepa-
rate privacy preserving from task assignment decisions, which
are closely coherent with each other. On the one hand, there
exists a tradeoff between privacy and accuracy. On the other
hand, as the key to achieving privacy preserving, social deci-
sions involving task division, and 1-hop allocation have direct
effects on task assignment later. To break this barrier, we
propose a privacy-preserving incentive mechanism, solving
the dilemma between task assignment of crowdsourcing and
privacy preserving in social IoT.

C. Incentive Mechanism

Recently there are many promising efforts underway to
address the incentive issues of crowdsourcing in numerous
contexts [38], [39], [40]. For example, Yang et al. [41]
designed two incentive mechanisms for user centric model
and platform centric model. Wang et al. [42] focused
on how to motivate teams of socially tight-knit work-
ers to truthfully report skill and working cost information.
Zhang and van der Schaar [43] developed a nonmone-
tary incentive mechanism based on participants’ reputation.
Wang et al. [8] presented a novel inference and learn-
ing approach in quality-aware incentive mechanism to esti-
mate workers’ long-term dynamic quality. Considering online
situation where workers may arrive in a random order,
Zhao et al. [9] designed an online auction mechanism to help
task requester select a subset of workers to maximize service
value under budget constraint. These works typically focus
on single-hop case, which is in the “burden” of identifying
expertise. The boom in social networking services, however,
offers unique potentials to mutual friendship exploitation,
enabling multihop incentive mechanism. In this case, individ-
uals are incentivized to forward tasks to workers who may

only have limited expertise but get along with other work-
ers capable of task finishing. The generalized task markets
(GTMs) framework developed by Shahaf and Horvitz [44] has
much in common with our problem. Its goal is to seek for
a coalition of workers whose multiattribute skills meet task
requirements. However, GTM approach assumes a binary util-
ity model (i.e., tasks are completed or not). Such practice leads
to tractable analysis, but miss key inherent conditional volun-
tary of workers, especially for those only contributing to task
routing.

VII. CONCLUSION

In this paper, we focus on solving the dilemma between
multihop incentive of crowdsourcing and privacy preserving
in social IoT, where division is adopted as the method for
preserving task requester’s privacy. Defining the conditions
to ensure privacy, we give guidelines on how many subtasks
should an entire task be divided into. To make sure the proba-
bility of revealing requester’s privacy, we give the upper bound
of the probability of privacy reveal. We also illustrate the trade-
off between privacy and task accuracy. Furthermore, we design
1-hop myopic routing policy and multihop payment policy for
efficient crowdsourcing task routing in social IoT. By lever-
aging monotone submodular property, we first propose an
assignment algorithm with 1/2 approximation ratio for 1-hop
routing. In multihop routing case, we prove that requester’s
cost will increase with the length of task forwarding chain,
which motivates workers to forward subtasks to friends with
the best expertise in their ego networks. In the future, we will
design an incentive mechanism based on auction model while
considering privacy preserving. We may generalize task type,
not limited to labeling problems.

APPENDIX A
PROOF OF LEMMA 1

For the conditional entropy

H(p0
n|Wn)

= −
∑

RWn∈Rn

M∑

m=1

P
(
tn = m, RWn

)
log P

(
tn = m|RWn

)

= −
∑

RWn∈Rn

M∑

m=1

P
(
tn = m, RWn

)
log

P
(
tn = m, RWn

)

P
(
RWn

)

(26)

where P(tn = m, RWn) = P(tn = m)P(RWn |tn = m). Given
the independence of responses RWn , we have

P
(
RWn |tn = m

) =
∏

rn∈RWn

P(rn|tn = m). (27)

Given further the unbiased prior knowledge, we have

P
0(tn = m) = 1

M

P
(
RWn

) =
∏

rn∈RWn

P(rn) =
(

1

M

)|Wn|
. (28)
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Then based on the above equations

H
(

p0
n|Wn

)
= −
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)|Wn|
⎞
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Submitting (27) and (28), we get

H
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)
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M

[
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The entropy of the prior knowledge is simply

H
(

p0
n

)
= −
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m=1

P
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= −M × 1

M
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Thus,

U(W) = E[IG] =
N∑

n=1

H
(

p0
n

)
− H

(
p0

n|Wn

)

=
N∑

n=1

∑

in∈Wn

e(γin). (32)

This finishes the proof of Lemma 1.

APPENDIX B
PROOF OF THEOREM 1

In our mechanism, in order to avoid privacy reveal and
guarantee high-quality task finishing, the assignment allocates
exactly one subtask to each 1-hop friend in requester’s ego
network. We encode such constraint in a partition matroid.

A matroid is a structure that captures and generalizes the
notion of linear independence in vector space [44]. It can be
specified as O = (J , I), where J is the ground set and
I ∈ 2J is the collection of subsets of elements in J that are
independent. In 1-hop routing, the ground set is J = N×|V0|.
If we partition J into disjoint sets Bi = {i} × N associated
with possible assignments for each 1-hop friend i ∈ V0, we

can construct the desired partition matroid by defining an inde-
pendent set to include no more than one element from each
of these sets.

As above-mentioned, such 1-hop routing problem falls
into monotone submodular optimization with cardinality con-
straints. To this end, we are inspired by [45] to propose the
greedy selection process, shown in Algorithm 1, which sorts
by increasing ability of 1-hop friends and prioritizes assigning
subtasks to high-ability friends. Such algorithm starts with the
empty set Wn for each subtask, and adds the element maxi-
mizing the derivative �Hn (ties broken arbitrarily) until there
is no element which can be added to create a feasible solution.
Using the results of [45], we can conclude that the proposed
greedy 1-hop routing algorithm is guaranteed to produce a
solution W ≥ (1/2)maxW∈IU(W).

APPENDIX C
PROOF OF LEMMA 2

Using the formula to calculate the sum of geometric series,
we have

ck +
k−1∑

i=1

αck(1+ α)k−1−i

= ck + αck
(1+ α)k−1 − 1

(1+ α)− 1

= ck(1+ α)k−1. (33)

This finishes the proof of Lemma 2.

APPENDIX D
PROOF OF THEOREM 2

Consider a multihop routing path for any subtask tn. Under
strictly proper routing scoring rule, for any k ∈ {1, 2, . . . , K−
1}, the kth worker truthfully updates the answer inference in
two ways. One is that truthful processing maximizes inference
accuracy, and thus the expected effect e(γk). The other is that
for any worker w who may be routed the subtask, truthful pro-
cessing by the kth worker maximizes the effect e(γw). In this
case, the expected effect of e(γw) (from the perspective of the
kth worker) is strictly greater when the kth worker processes
truthfully.

According to the proposed payment policy, the kth worker
will get an extra payment α(e(γk+1)− e(γk)) if he chooses to
forward the subtask. In order to maximize the payment, the
kth worker will forward the subtask to the worker with the
highest effect or ends the routing if his effect is the highest
in his ego network. Above all, we can conclude that no one
on the routing path wants to deviate from this equilibrium
strategy, given the belief that all other workers follow it.

APPENDIX E
PROOF OF LEMMA 3

Using Stirling’s approximation, the probability of no map-
ping conflicts (19) can be developed as

P̄(M, N;L) =
√

2πMN
(
MN/e

)MN

√
2π
(
MN − L

)(
MN − L/e

)MN−L
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× 1+ O
(
1/MN

)

1+ O
(
1/MN − L

)

=
√

MN

MN − L
·
(

1− L

MN

)L−MN
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(
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Noting that (1− x)y < e−xy(y > 0), we have

P̄(M, N;L) >

√
MN
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· eL−L2/MN · e−L

× 1+ O
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)

1+ O
(
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√
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(
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)

1+ O
(
1/MN − L

)

> e−L2/MN · 1+ O
(
1/MN

)

1+ O
(
1/MN − L

) . (35)

This finishes the proof of Lemma 3.

APPENDIX F
PROOF OF LEMMA 4

According to the Markov Inequality, we have

P(S > b) <
E(S)

b
= n

b
ln

n

n− b
. (36)

Hence, we can derive that

P(S < b) < 1− n

b
ln

n

n− b
. (37)

We have completed the proof.

APPENDIX G
PROOF OF THEOREM 3

Since si are all independent random variables and 0 ≤ [(n−
b+ 1)/n]si ≤ 1 for ∀i ∈ N , using Chernoff Bound, we have

P

(

|S− μ| > n− b+ 1

n
εμ

)

≤ exp

(

− με2

2+ ε

)

. (38)

This finishes the proof of Theorem 3.

APPENDIX H
PROOF OF THEOREM 4

It is obvious that task redundancy denoting by the average
number of 1-hop friends assigned to each type of subtasks is
|V0|/N. In our mechanism, each subtask has one true answer
from M possible labels. According to Karger’s result in [15],
it is possible to obtain an answer to each task correctly
with probability 1 − ε as long as the redundancy per task is
O((M/q) log(M/ε)), where q is the crowd-quality parameter
that is, related to friend reliability. Considering the stability of
pool of 1-hop friends, q can be regarded as a constant. Hence,
task redundancy can be scaled as O(M log(M/ε)). We have
completed the proof.
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