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Abstract— In this paper, we propose a novel game-based
incentive mechanism for multi-resource sharing, where users are
motivated to share their idle resources in view of conditional
voluntary. Through social networking service platforms, such a
crowdsourcing service fully explores the significant influence and
computing potential of mobile social networks. Specifically, a
combination of task allocation process, profit transfer process,
and reputation updating process are involved in this sharing
incentive mechanism, satisfying truthfulness, individual rational-
ity, and robustness. To maintain the social fairness-efficiency
tradeoff, we further develop a resource sharing algorithm on
the basis of dominant resource fairness, revealing that the
sacrifice of fairness properties is necessary for the improvement
of efficiency. Real-world traces from Facebook are numerically
studied, validating social fairness and efficiency of our social
crowdsourcing mechanism.

Index Terms— Social crowdsourcing, game-based incentive
mechanism, multi-resource sharing, fairness-efficiency tradeoff.

I. INTRODUCTION

RECENT years have witnessed the explosive growth of
data, which brings profound changes in people’s daily

life. According to the Cisco Global Cloud Index, the annual
amount of global data will reach 10.4 ZB by 2019 [1]. Cloud
computing is proposed as an efficient paradigm for processing
the massive data, where Quality of Service (QoS) guaranteed
services can be provided. However, the high maintenance
costs and the failure to provide cooperation of distributed
devices remain to be two drawbacks. Therefore, it’s desirable
to have computing service as a supplement to conventional
cloud services, which may be realized by mobile and social
computing.

With the progress of microelectronics, personal devices are
equipped with powerful hardware and can perform complex
computing tasks. However, such potential is still under uti-
lized, which motivates us to design computing services in
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distributed personal devices. According to the International
Data Corporation (IDC) Worldwide Quarterly Mobile Phone
Tracker, it is estimated that 982 million smartphones will be
shipped worldwide in 2015 [2]. Such service can be applied
to collaborative sensing, collaborative localization [3] and
distributed storage [4], etc., catering to users’ heterogeneous
computing demands.

The advent of social networks, such as Facebook, LinkedIn
and Twitter, has greatly aroused people’s enthusiasm in making
social connections online. According to the statistics [5], the
number of users remaining monthly active on Facebook has
been tremendously growing, reaching 1.59 billion in 2015,
indicating great computing capacities if resources can be
shared between friends. Moreover, social networks are orga-
nized based on mutual friendship, providing users with enough
incentives to share their resources.

To gather the help of friends in social networks corresponds
to the idea of social crowdsourcing [6]–[9]. Crowdsourcing
systems are extremely effective to perform large-scale data-
processing tasks. Tang et al. [10] proposed a crowdsourced
video streaming framework, which enables nearby mobile
users to crowdsource their radio connections and resources
for cooperatively video streaming. Duan et al. [11] utilized
the collaboration of mobile devices to collect demanded data.
Karger et al. [12] analyzed how to guarantee the reliability
of crowdsourcing systems. Different from all previous works,
however, we are the first to explore the benefit of computation
crowdsourcing in social networks.

Even in social networks, it’s more practical to consider
users as conditional volunteers. Sharing idle resources may
deplete remaining battery power sooner than expected since
most mobile devices today are battery-constrained. In addition,
if this sharing service is totally free, there exists an inevitable
problem of “free-riding behavior”, i.e., some users may simply
consume idle resources of their friends and refuse to share their
own. Thus it is necessary to develop an incentive mechanism
to encourage users to participate in social crowdsourcing
service. From the platform’s perspective, how to allocate the
tasks from the requesters to their idle friends efficiently has
become an increasingly urgent issue. Game theory has natu-
rally become a desired approach, which is effective in study-
ing the strategic interactions process and designing optimal
allocation schemes [13]. Zhang and Schaar [14] investigated
the repeated game-based task allocation scheme with novel
incentive mechanisms.

To this end, we propose a Vickrey-Clarke-Groves (VCG)
game-based incentive mechanism for multi-resource sharing,
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satisfying truthfulness, individual rationality and robustness.
In addition to monetary reward, we also incorporate reputation
reward into our incentive mechanism. Each user is assigned
with a reputation recorded to reflect his/her ability. The SNS
platform determines whether or not to allocate the task to
the user by his/her reputation. In general, high reputation
always can earn more payments for users and facilitate their
requesting service afterwards.

In such multi-resource allocation, how to guarantee the
fairness and efficiency has gained increasing attention. Pre-
vious research mainly focuses on the fairness issues in data
centers [15]–[18]. Ghodsi et al. [19] first proposed DRF
as a possible metric in measuring the fairness of multi-
resource allocation in computer clusters, and then DRF
was further implemented in packet queueing systems [20].
Joe-Wong et al. [21] followed up with a unifying framework
for the fairness-efficiency tradeoff by introducing two families
of allocations. Dolev et al. [22] proposed an alternative to
DRF. These work make a great contribution to the fundamental
knowledge and applications of DRF. However, these resource
sharing schemes may not be compatible with complicated
structures and characteristics of social networks, such as
degrees of socialization, multiple resource pools and energy
constraints.

Furthermore, we develop a DRF-based multi-resource
sharing algorithm to facilitate this social crowdsourcing ser-
vice. Specifically, we incorporate social connections into this
sharing problem and introduce the concept of socially equiva-
lent resource. To guarantee the social fairness in allocation,
the resource of each user is constrained by the maximal
dominant share, which is obtained from this DRF-based
algorithm.

Our main contributions are highlighted as follows.
• We propose a novel game-based incentive mechanism for

multi-resource sharing, fully realizing the social crowdsourc-
ing service. Both users’ social connections and participation
incentives are involved.
• Considering users’ conditional voluntary, we devise the

incentive mechanism by utilizing the VCG game, guaranteeing
truthfulness, individual rationality and robustness. Specifi-
cally, this mechanism involves a combination of task alloca-
tion process, profit transfer process, and reputation updating
process.
• In view of social connection, we further develop

a DRF-based multi-resource sharing algorithm, achieving the
social fairness-efficiency tradeoff.
• Trace-driven simulations validate the theoretical analysis

about social fairness and efficiency of our sharing incentive
mechanisms.

In what follows, we provide the details of system model
in Section II. In Section III, problem formulation for sharing
incentive mechanism is given. To proceed, we first propose a
DRF-based resource sharing algorithm in Section IV. We fur-
ther design an efficient VCG-based incentive mechanism for
resource sharing in Section V. Finally, discussions, simulations
and conclusions are shown in Sections VI, VII and VIII,
respectively.

II. SYSTEM MODEL

In this section, we give an overview of our incentive
mechanism, including a single SNS platform and N mobile
users denoted by Ui (i ∈ N := {1, · · · , N}). Actually, there
exists significant heterogeneity in users’ resources, e.g., some
users only have insufficient resources, while other users have
much idle resources. With the SNS platform, the resources
can be shared among users, i.e., users can either share idle
resources or utilize their friends’ resources to fulfill certain
jobs. But in reality, such resource sharing always brings lots of
challenges, such as power shortage or privacy leak, decreasing
users’ willingness to share.

A. Network and Service Model

Consider the social network consisting of multiple ego
networks, where the “ego” refers to the central user in each
friend circle [23]. For each user Ui , his/her ego network can
be denoted by a graph Gi = (Vi , Ei ), where Vi is the set
of nodes1 in the ego network and Ei is the set of social ties
between Ui and his/her friends. Besides, Gi could be either
directed or undirected, depending on the context. For example,
real-world traces of Facebook provided in [24] correspond to
an undirected structure while the ego networks in Google+
and Twitter2 are mostly directed. By the definition above, the
entire social network can be represented by a larger graph
G = (V , E), where V = ⋃

i∈N Vi and E = ⋃
i∈N Ei .

Additionally, different users’ ego networks can overlap with
each other, i.e., they can have common friends, and we denote
�v := {i |v ∈ Vi } as the set of users who have friendship with
node v. Figure 1 presents an example of such social network
with 3 overlapping ego networks.

One of the most important traits of social networks is the tie
strength between two individuals. We use φv i to indicate the
tie strength between node v ∈ Vi and user Ui (perceived by
user Ui ). Note that in the directed social network, φv i is not
always equal to φiv . In our model, it is assumed that people
are more willing to share their idle resources with those who
have stronger ties with them. Many social platforms, such as
Facebook, Twitter and Google+, have developed their own
ways to characterize this value depending on users’ profiles,
common friends, etc. Methods for quantifying the tie strength
are beyond the scope of this paper.

The process of social crowdsourcing service is described
as shown in Fig. 1: (1) A certain node first submits a
computing job and the corresponding payment to the SNS
platform3; (2) The platform selects qualified users as winning
set according to user reputation, segments the job into multiple
small tasks, and distributes them to the selected users through
social network; (3) The users utilize their idle resources
(e.g., CPUs, memory and storage, etc.) to accomplish tasks

1In the rest of this paper, we will use “nodes” and “friends” interchangeably.
The same is with “user” and “ego”.

2The datasets of Google+ and Twitter are publicly accessible data. They
are available at http://snap.stanford.edu/data/.

3We assume that the SNS platform is not involved in the profit transfer
process between users.
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Fig. 1. General sharing incentive mechanism.

allocated and feed back intermediate results to the platform;
(4) The platform pays monetary reward to the selected users
and updates user reputation according to their performance;
(5) The platform further compiles the data to generate the final
result of the original problem and then delivers the result to the
node. In this way, users can obtain monetary and reputation
reward by sharing idle resources with their friends through the
implementation of this mechanism.

Actually, our system model can be implemented in a variety
of current real-world systems. Our first example is Open
Garden, one typical crowdsourced user-provided networking
system [25]. With MeshKit platform, users can post the
resource information about their radio connection resources
such as Bluetooth, peer-to-peer WiFi, and data resources such
as news and files. Accordingly, users can share these resources
with the requesting friends without an Internet connection.
In addition, the second example is Waze, one collaborative
localization system [26]. With Facebook platform, users can
post and further share real-time traffic information (i.e., infor-
mation resources) in their friend circle, realizing the vehicle
dynamic navigation service.

B. Workload and Multi-Resource Model

In our proposed mechanism, each submitted job is
segmented into multiple small tasks requiring the same amount
of resources (or consuming the same cost). The number of
allocated jobs denoted by W , is very large and it is acceptable
not to enforce W to be integer-valued. Note that the above
segmenting operation is a relatively mature technique in clas-
sical MapReduce systems, which can be directly applied in
our mechanism.

Through the SNS platform, users are willing to share their
idle resources to help their friends fulfill as many tasks as
possible until the job is finished finally within the sharing
period.4 Each task demands a combination of multi-type

4The sharing period is set by the user when he/she takes the service and
decides to share the resources.

resources. Formally, suppose there are m types of resources,
and the resource requirement for per task of node v ∈ V
is denoted by a vector �rv = (r (1)

v , r (2)
v , · · · , r (m)

v ), where
r (k)
v (∀k ∈ M =: {1, · · · , m}) is his/her demand for the type-k

resource to process one task. The high heterogeneity of mobile
devices also requires to characterize the resources of each
node more specifically and flexibly. Hence, we introduce a
multi-resource vector �ci = (c(1)

i , c(2)
i , · · · , c(m)

i ) to denote the
idle resources of user Ui within the sharing period. Note that
resources are referred as “idle” if the system can still operate
normally when shared with others.

Denote an N × |V | matrix X as the workload allocation,
whose element xiv ∈ RN (∀i ∈ N , v ∈ V ) indicates the
maximum amount of tasks from user Ui to node v. For
node v /∈ Vi (i ∈ N ), we have xiv = 0. Under this definition,
the amount of normalized resources that Ui shares with
node v can be represented as �αiv := (α

(1)
iv , · · · , α(m)

iv ), where

α
(k)
iv = r(k)

v xiv

c(k)
i

(∀k ∈ M).

C. Monetary and Reputation Reward Model

In such incentive mechanism, users can receive the payment
by sharing their idle resources with friends, and they also needs
to pay for each task their friends help them to fulfill. Each
user Ui will consume αi cost of idle resources to help his/her
friend denoted as v ∈ Vi accomplish tasks. Since the earned
payments can be used for fulfilling their own tasks in the
future, users are willing to share even though it may cost them
some additional payment.

In addition, to encourage resource sharing and address
“free-riding” problem, we incorporate user reputation into
our mechanism, which is an indicator of user historical
performance and reliability. Denote the reputation of user
Ui as pi , which is a natural number from the finite set
P = {0, 1, · · · , P}. Here the reputation represents the social
status of users. High reputation reflects good social status,
meaning that the user has done very well in finishing tasks.
As an administrator, the SNS platform needs to check user
reputation to prevent job requests from malicious or low-
reputation nodes, making it safer for users to share idle
resources. The details of reputation scheme will be discussed
later.

III. PROBLEM FORMULATION

A. Incentive Ploblem

As mentioned previously, the social crowdsourcing service
is enabled by motivating users to share and allocate idle
resources reasonably. We assume that the SNS platform is
authorized to manage nodes’ payment and allocate the tasks
to users. When any friend v ∈ Vi submits a job request,
user Ui gains the profit by helping friend v fulfill the tasks,
and then friend v will pay user Ui for idle resources. In this
process, users serve as the players with the goal of maximizing
their own utility. In addition to monetary reward, each user is
assigned with a reputation reflecting his/her ability.

Under the proposed incentive mechanism, we try to address
the following problems:
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• From the platform’s perspective, how to allocate the tasks
from the requesters to users efficiently (or how to guarantee
the truthfulness of users).
• From the users’ perspective, they need to decide how

to allocate their idle resources fairly (or how to cope with
social connections) and efficiently (or how to achieve workload
balance).

The key to solving the above problems is to resolve the con-
flict between social connections and participation incentives.
In the following, we will formally characterize these problems.

The objective of the platform is to improve overall service
performance with the minimum cost, by distributing the tasks
to users reasonably. Denote the outcome for task allocation
as y = {yi |i ∈ �v }, where yi ∈ RN is the number of tasks
allocated to user Ui within limited time Tv and

∑
i∈�v

yi = W .
We suppose that the number of tasks that user Ui is capable
of finishing within the time limit is zi . To evaluate the per-
formance of each user’s service, we define cost-effectiveness
ratio as si = αi/pi , where αi and pi are the corresponding
cost and reputation. For a given allocated task, the higher user
reputation is, the more effectively the task will be finished,
meaning that the lower cost-effectiveness ratio becomes. Here
the effectiveness mainly characterizes how the allocated tasks
can be finished within time limitation. Intuitively, choosing
a user with lower reputation will increase the probability
of failing to finish the tasks, which may deteriorate service
performance and bring more loss.

User Ui will charge different payments for their idle
resources due to the difference in cost and completed tasks.
Hence, the aggregated cost-effectiveness ratio of the service
requested by node v can be calculated as

Cv =
∑

i∈�v

yi si . (1)

In our proposed incentive mechanism, the task allocation
(performed by the SNS platform) is based on a “social
decision”, minimizing the aggregated cost-effectiveness ratio
(or equivalently, maximizing the aggregated utility). Accord-
ingly, the social decision problem is to find an optimal
allocation y∗ = {y∗i |i ∈ �v} that

y∗ = arg min
y

∑

i∈�v

yi si

s.t .
∑

i∈�v

yi = W.

0 ≤ yi ≤ zi , yi ∈ RN . (2)

Moreover, this problem is similar to the knapsack and the
capacitated lot-size problems, which have been proved to be
NP-hard. However, we can solve this problem easily through
the implementation of a dynamic programming approach
within pseudopolynomial time [28]. To facilitate reading,
we list the major notations in Table I.

B. Our Solution

In essence, our incentive mechanism involves a combination
of task allocation process, profit transfer process, and reputa-
tion updating process.

TABLE I

MAJOR NOTATIONS

To guarantee the effectiveness of social crowdsourcing
service, we aim at designing a VCG game-based incentive
mechanism for multi-resource sharing, so as to stimulate
users’ willingness to share idle resources and provide high-
quality task finishing. As an applied branch of game theory,
the VCG mechanism seeks socially optimal solutions and
possesses several desirable economic properties, especially for
task allocation [13], [28], [29].

In VCG game, user Ui in �v will make a joint strategy
including two aspects. That is (i) the cost α̂i that the task
allocated by platform takes to be completed, and (ii) the
promised sharing time calculated with which the promised
number of tasks is ẑi . Thus we denote the joint strategy as
(α̂i , ẑi ). For personal profit, these friends may misreport the
real cost αi and real sharing time characterized by zi .

As mentioned previously, the above social decision
problem involves both user social connection and participation
incentive, respectively. The latter can be represented by the
definition of si in the formulation of optimal allocation y∗.
Considering user social connection, the tasks need to be
allocated reasonably and effectively in the context of social
networks. Actually, this is different from traditional task
allocation schemes in mobile networks. In particular, it is
not reasonable to only take reward into account in allocating
resources to friends, with user social connection ignored. To
guarantee the social fairness in allocation, we first study a
DRF-based resource sharing algorithm, where the maximal
dominant share is obtained to limit the resources allocated
to each friend.

IV. DRF-BASED MULTI-RESOURCE

SHARING ALGORITHM

A. Fairness and Efficiency Measures in Social Networks

We adopt DRF as the basis of fairness measure in multi-
resource scenario. Briefly, DRF achieves the max-min fairness
of users’ dominant shares (i.e., the shares of their most highly
demanded resource among all types) [18]–[21]. As shown
in [19], DRF has many properties and it is easy to implement,
which yields low overheads and is particularly suitable for
large-scale social networks.

However, the heterogeneity of users’ tie strength with
friends could make traditional DRF undesirable. Consider a
simple case where a certain node A has 1GB ROM that can be
shared with two users B and C . According to the philosophy of
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DRF, the fairest way for B and C is to receive an equal amount
of resources. As for social networks, however, allocation above
could be highly unfair since B and C may differ in tie strength
with A. For example, if B is A’s boyfriend while C is only
a distant schoolmate of A, B will lose the sharing incentive
and envy C under such an equal allocation, which violates
the economic propositions of DRF. From A’s perspective, she
may also prefer to allocate more resources to B and regard a
biased resource distribution as a fairer result.

Therefore, fairness in social networks must be established
on tie strength, and then we introduce a concept called
Socially Equivalent Resources (SER) to quantize this feature.
Generally, SER reflects the amount of allocated resources that
users share with friends. Specifically, we denote π(α

(k)
iv , φv i )

as the amount of type-k SER share that Ui shares with node
v, which is a function of the real allocated resources and their
tie strength. For simplicity of analysis, we assume π(x, y) is
linear of x . Besides, π(α

(k)
iv , φv i ) is monotonically increasing

with α
(k)
iv so that more real allocations can correspond to more

SER shares, and this function also decreases with φv i to ensure
that users share more real resources with the friends having
stronger ties with them. One simple form is π(α

(k)
iv , φv i ) =

α
(k)
iv

∑
i∈�v

φvi

φvi
.

The concept of dominant resources is naturally extended to
the dominant SER. Let

μi,v = max
k∈M

π

(
r (k)
v

c(k)
i

, φv i

)

(3)

denote the dominant SER share allocated by user Ui to process
one task of node v, and then μi,v xiv is the total dominant SER
share allocated by Ui to v.

Based on the discussions above, we can further formally
define DRF in social networks.

Definition 1 (DRF in Social Networks): A multi-resource
allocation X satisfies DRF in social networks if it is feasible
and for any i ∈ N and v ∈ V , user Ui cannot allocate higher
dominant SER share to node v while maintaining feasibility
without decreasing the dominant SER share to any other node
v ′ (v ′ ∈ Vi ) whose xiv ′μi,v ′ ≤ xivμi,v .

Besides the consideration for fairness, from the global view,
we also wish the users to allocate their resources in an efficient
manner, or to maintain a certain degree of workload balance.
Similar to DRF, our metric of interests is Dominant Workload
Imbalance denoted by θ , i.e.,

θ = max
i,l∈V

τi

τl
, (4)

where τi = maxk∈M
∑

v∈Vi
α

(k)
iv reflects the dominant work-

load at user Ui . Compared to other workload measures (e.g.,
the average workload of all types [22]), the dominant workload
is particularly important since it reflects the bottleneck of a
system. Therefore, our scheme should lower the dominant
workload imbalance as much as possible.

B. Resource Sharing Algorithm

Before showing this algorithm, a concept called bottleneck
resource needs to be introduced.

Definition 2 (Bottleneck Resource): Resource k is the bottle-
neck resource shared by user Ui with node v if

∑
v∈Vi

α
(k)
iv = 1

and xivμi,v ≥ xiv ′μi,v ′ for any other node v ′ who demands
resource k at Ui .

Theorem 1: The necessary and sufficient condition for an
allocation X to achieve DRF in social networks is that each
user Ui (i ∈ N ) has a bottleneck resource shared with node
v ∈ Vi .

Proof: See Appendix A. �
According to Theorem 1, any algorithm to achieve DRF in

the proposed mechanism must ensure that each user has at
least one bottleneck resource shared with any node in his/her
ego network. Algorithm 1 is proposed to realize this goal.

Algorithm 1 DRF-Based Resource Sharing Algorithm
1: Initialize xiv = 0 (∀i ∈ N , v ∈ V );
2: Si = Vi and Ki = ∅ (∀i ∈ N );
3: L(k)

i = c(k)
i (∀k ∈ M, i ∈ N );

4: for each i ∈ N do
5: repeat
6: xiv ← xiv +�iv (∀v ∈ Si );
7: Ki ← Ki

⋃{̂k};
8: L(k)

i ← L(k)
i −

∑
v∈Si

r (k)
v �iv (∀k ∈ M);

9: Si = {v|∀k ∈ Ki , r (k)
v = 0, v ∈ Si };

10: until Si = ∅
11: end for

Briefly, for each user Ui , i ∈ N , Algorithm 1 allocates an
equal dominant SER share to all nodes who have social ties
with Ui and do not use any saturated resources until Ui have a
bottleneck resource at all nodes. In each “Repeat-Until” loop
of user Ui , Ki is the set of resources that have been used up,
Si is the set of friends who have social ties with Ui and do not
demand any saturated resources k ∈ Ki , and L(k)

i is the amount
of left idle resources of type k at user Ui at the beginning of
that loop. Moreover, �iv in step 6 is the increment of xiv in
that loop, i.e.,

�iv = 1

μi,v
min
k∈M

⎛

⎜
⎝

L(k)
v

∑
v ′∈Si

r(k)
v

μi,v′

⎞

⎟
⎠. (5)

In step 7, k̂ is the type of resources which are exhausted in
that loop, which is shown as

k̂ = arg min
k∈M

⎛

⎜
⎝

L(k)
i

∑
v ′∈Si

r(k)
v

μi,v′

⎞

⎟
⎠. (6)

We will present a further explanation of equations (5) and (6)
in the proof of Theorem 2.

Theorem 2: Algorithm 1 can achieve the DRF in social
networks.

Proof: See Appendix B. �
As for the time complexity of Algorithm 1, the number of

“Repeat-Until” loops will be at most m since Si must be empty
when all m types of resources are drained out. Since we focus
on how time complexity scales with the network scale and the
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number of users, the algorithm is of O(1) at each user, and
thus the overall time complexity of Algorithm 1 is O(|V |).
Low time complexity makes Algorithm 1 very suitable for
handling large-scale social networks.

C. Property Analysis

We first investigate economic properties of Algorithm 1.
Definition 3 (Pareto Efficiency): A resource allocation sat-

isfies Pareto Efficiency (PE) if it is impossible to increase any
user’s dominant SER share with any node without decreasing
the dominant SER shares with any other nodes.

Definition 4 (Sharing Incentive): An allocation holds Shar-
ing Incentive (SI) if the node is better off than they would be
under an equal SER share of all resources at any user.

Definition 5 (Envy-Freeness): A resource distribution pattern
satisfies Envy-Freeness (EF) if no node prefers the allocation
of others from any user.

Definition 6 (Strategy-Proofness): The Strategy-
Proofness (SP) is maintained if the node has no incentives to
submit untruthful demands of multi-type resources from any
user.

According to the definitions above, we can further obtain
the following propositions.

Proposition A.1: The allocation X obtained through
Algorithm 1 satisfies Pareto Efficiency, Sharing Incentive,
Envy-Freeness and Strategy-Proofness.

Proof: See Appendix C. �
Proposition A.2: Algorithm 1 achieves the Dominant

Workload Balance (θ = 1).
This proposition holds because each user has at least one

saturated resource by Theorems 1 and 2. Hence, the dominant
workload of each user is 100%, and then the dominant
workload imbalance θ achieves the minimum value 1.

As for the workloads of each single-type resource, we have
the following result.

Proposition A.3: For a specific resource type k, the
workload imbalance across all users is upper-bounded by

maxi∈N
∑

v∈Vi

Aiv c(k)
i

r(k)
v

, where Aiv = maxk∈M
r(k)
v

c(k)
i

.

Proof: See Appendix D. �
Finally, we investigate the efficiency of Algorithm 1. In

the multi-resource settings, efficiency can be represented in
different ways, such as the average resource utilization [22]
and the sum of dominant shares [18], [21]. In this paper,
we mainly consider the latter one. The following proposition
bounds the efficiency obtained by Algorithm 1.

Proposition A.4: Let B = mini∈N
minv∈Vi π(1,φvi )

maxv∈Vi π(1,φvi )
. The lower

bound for the sum of users’ dominant SER shares with all their
friends is B

m , i.e.,

∑

i∈N

∑

v∈Vi

μi,v xiv ≥ B

m
.

Proof: See Appendix E. �

D. Improving the Efficiency

Proposition A.4 shows that the efficiency of Algorithm 1
is relatively low, which is the inherent drawback of

DRF [18], [21]. Although Joe-Wong et al. [21] provided
metrics for the fairness-efficiency tradeoff, it may not be
suitable for large-scale social networks due to computational
intractability. Thus, we introduce the concept of ε-DRF
so as to improve the efficiency while maintaining the
implementation.

Definition 7 (ε-DRF): A multi-resource allocation X satis-
fies ε-DRF if for any i ∈ N and v ∈ V , node v cannot increase
his/her dominant SER share at user Ui without decreasing that
of any other node v ′ in Vi whose xiv ′μi,v ′ ≤ xivμi,v − ε.

This definition resembles that of DRF except that we relax
the condition xiv ′μi,v ′ ≤ xivμi,v to xiv ′μi,v ′ ≤ xivμi,v−ε. Sys-
tem efficiency varies under different values of ε. Specifically,
ε = 0 achieves the exact DRF while ε = maxv,i π(1, φv i) is
efficiency-optimal. However, ε-DRF improves the efficiency
at the cost of a certain degree of fairness, especially some
economic properties. Before detailed analysis, we first investi-
gate how to obtain ε-DRF in social networks. Similar to DRF,
there is a sufficient and necessary condition for ε-DRF.

Theorem 3: An allocation X maintains ε-DRF if and only
if each user Ui (i ∈ N ) has an ε-bottleneck resource shared
with any node v ∈ Vi .

The concept of ε-bottleneck resources is similar to
Definition 2 except that we modify xivμi,v ≥ xiv ′μi,v ′ to
|xivμi,v − xiv ′μi,v ′ | ≤ ε. The proof of Theorem 3 directly
follows that of Theorem 1, so we do not present it here.
Based on Theorem 3, we seek to find an allocation X that
leaves each user an ε-bottleneck resource at each node in
his/her ego network, which is equivalent to the following linear
programming (LP) problem, i.e.,

max
X≥0

∑

i∈N

∑

v∈Vi

μi,v xiv

s.t .
∑

v∈Vi

xivr (k)
v ≤ c(k)

i , ∀i ∈ N , k ∈ M,

|xivμi,v − xiv ′μi,v ′ | ≤ ε, ∀i ∈ N , v, v ′ ∈ Vi . (7)

Solving this LP problem is very easy through implementation
of some polynomial-time LP algorithms [27]. The correctness
of such a transformation is as follows. At first, the solution
to this LP problem ensures that a certain user Ui can have at
least one saturated resource k̂ shared with any node v ∈ Vi ;
otherwise we can increase the value of the objective function
in (7) by allocating more jobs to v using unsaturated resources.
However, this contradicts the optimality of the solution to (7).
In addition, the second constraint of the LP problem above
ensures |xivμi,v − xiv ′μi,v ′ | ≤ ε holds for v and any other
node v ′ in Vi . Consequently, the solution to the LP prob-
lem gives each user an ε-bottleneck resource at each node
and further achieves ε-DRF in social networks according to
Theorem 3.

We can validate the above propositions by the previous
example with ε = 0.2. Under our scheme, the result is that
A receives 〈68.6%, 51.4%〉 of all ROM and CPU resources
while B gets 〈8.1%, 48.6%〉. Thus B’s dominant SER share is
below 50% and A has a strictly higher share of all resources
than B , violating the Sharing Incentive and Envy-Freeness.
However, when user B untruthfully submits his/her demands
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as 〈5GB ROM, 3-unit CPU〉. The result becomes
〈45.5%, 34.1%〉 for A and 〈54.5%, 65.4%〉 for B , where B’s
dominant SER share increases and the Strategy-Proofness
does not hold.

Proposition B.1: ε-DRF is Pareto Efficient.
The proof of this property resembles to that of

Proposition A.1, so we omit it for the brevity.
Proposition B.2: ε-DRF achieves the Dominant Workload

Balance.
This conclusion can be directly derived from the discussion

about the correctness of our LP formulation. Unfortunately,
some other economic properties of fairness do not always hold
for any ε > 0. In fact, such a result is not unexpected since
Parkes et al. [17] have demonstrated that it is impossible to
improve the sum of dominant shares while maintaining any
one of the following three properties. In other words, there
exists a tradeoff between fairness and efficiency.

Proposition B.3: ε-DRF does not always satisfy Sharing
Incentives for any ε > 0.

Proposition B.4: ε-DRF does not always satisfy
Envy-Freeness for any ε > 0.

Proposition B.5: ε-DRF does not always maintain
Strategy-Proofness for any ε > 0.

V. VCG GAME-BASED INCENTIVE MECHANISM FOR

MULTI-RESOURCE SHARING

A. Reputation Updating Policy

To make task allocation with high quality and efficiency, a
differential reputation scheme is performed by the platform:
users with higher reputation will be given higher chance to
receive allocated tasks and further obtain more payments.

Assume that there exists a threshold reputation pth ∈
P = {0, 1, · · · , P}. Specifically, if user reputation is higher
than pth at the beginning of a time slot, the platform will
deliver a task to user at this time slot. We call this kind
of workers active worker. While if the reputation is lower
than pth , the worker won’t receive any task. We call this
kind of workers isolated worker. Since the model is dynamic,
user reputation changes at the end of every time slot. Hence,
active workers have the chance to be isolated when failing to
accomplish tasks. While isolated workers also have chance to
get over the threshold pth and further increase the reputation.
The updating rule of user reputation can be expressed as
follows:

pi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{P, pi + 1} if ki pi ≥ pth

pi − 1 if ki = 0 and pi ≥ pth

0 if ki = 0 and pi = pth

pi + 1 if pi ≤ pth.

(8)

where ki is a binary variable indicating whether user Ui has
completed all the tasks (ki = 0 means failing to finish all the
tasks, and vice versa).

Under this reputation scheme, when a worker is active and
finishes his/her task at the last time slot, his/her reputation
increases by 1 while not exceeding P after one time slot.
While if he/she does not finish the task, his/her reputation
decreases by 1. When a worker’s reputation falls to pth and

he/she does not finish a task last time, the platform will
set the reputation to 0. An isolated worker, on the other
hand, increases his/her reputation by 1 each period until the
reputation reaches pth and he/she is activated again.

B. VCG Game-Based Incentive Mechanism

At a certain time, the SNS platform receives sharing ser-
vice request as well as the period of limited time Tv from
node v. After job division, a total of W tasks are to be done.
In addition, the platform needs to determine a winning set
�′v ⊆ �v according to user reputation. Specifically, each user
Ui in winning set �′v should keep active so as to help fulfill
these tasks with high efficiency. Hence, we obtain

�′v = {i |pi ≥ pth, i ∈ �v } . (9)

Accordingly, as for node v, there are
∣
∣�′v

∣
∣ users altogether who

would offer idle resources. For each user Ui who has received
allocated tasks, i.e., i ∈ �′v , we assume that his/her helping
node v fulfill the unit task will incur αi cost of idle resource,
which is private information of Ui .

In a heterogeneous social network, each selected user will
allocate a different amount of resource. In order to finish
the job more efficient (using less time), it is intuitive that
we should allocate those who can allocate more resources
more tasks. In order to achieve DRF fairness, we assume that
users allocate their idle resources according to Algorithm 1
introduced in Section IV. It is worth noting that once the job
request of node v is satisfied, resource allocation will end
so as to improve efficiency. Suppose the number of tasks that
user Ui is capable of finishing within the time limit is zi , which
is associated with the resource allocation in Algorithm 1.

For user Ui who has received tasks, he/she will obtain
the corresponding payment from node v once successfully
returning the result to the platform. Based on the optimal
task allocation y∗, a transfer which presents the marginal
contribution of users to the society is imposed to guarantee the
truthfulness of users. Here, the truthfulness has the following
two meanings. One is that the user charges with a reasonable
price according to the cost of providing idle resources. The
other is that the user holds to supply idle resources until
the allocated tasks are all done. In particular, we denote the
transfer associated with user Ui as τi , i.e.,

τi =
⎡

⎣minyl≤zl

∑

l∈�′v / i

ylsl

⎤

⎦−
⎡

⎣
∑

l∈�′v / i

y∗l sl

⎤

⎦. (10)

Note that the first part in the summation is the minimum
aggregated costs that other users can derive if user Ui does
not participate in this VCG mechanism. The second part is
sum of aggregated costs of the other users except user Ui

under the optimal task allocation in the presence of Ui . Thus,
equation (10) represents the marginal contribution of user Ui

to reducing the total cost of the optimal allocation. It is easy
to see that τi is always nonnegative.

As mentioned in reputation scheme design, choosing a user
with higher reputation will increase the probability of finishing
the tasks successfully, which may bring more profit. Users with
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higher reputation will receive more payments than those with
lower reputation upon the completion of equal tasks. Thus
for each user Ui , we incorporate the reputation pi into the
his/her reward as a weighting factor, providing the incentive
to improve user reputation. In case that users may not be
truthful, there is another punishment scheme for those who
quit before finishing the tasks. Assume that user Ui finally
finishes yi

′, so the final payment to Ui can be expressed as
the difference between the corresponding reward for the true
amount of finished tasks minus a penalty γ in punishment
scheme, which is determined by how critical the tasks demand
to be met. Therefore, the payment to user Ui after he/she
submits the results to the platform or after the time limitation
Tv is ui = pi · τi |zi=y′i − κγ, where τi |zi=yi

′ is the transfer
of user Ui when zi equals yi

′. Similar to the definition of
ki , κ is also a binary variable indicating whether user Ui has
completed all the tasks within time limitation Tv (κ = 1 means
failing to finish all the tasks, and vice versa). On the other
hand, the total cost of user Ui for accomplishing the allocated
tasks can be characterized as ci = y∗i αi .

Based on the above fair resource allocation, user Ui will
make a joint strategy (α̂i , ẑi ). Accordingly, we define the
utility of user Ui , denoted by fi , as his/her profit. In detail,
the utility of Ui is ui − ci if he/she receives allocated tasks,
i.e., i ∈ �′v , and 0 otherwise. Accordingly, the utility function
of each user can be formulated as

fi (α̂i , ẑi ) =
{

ui − y∗i αi if i ∈ �′v ,
0 otherwise.

(11)

We described the detailed VCG game-based incentive mech-
anism in Algorithm 2. Whether or not a user is selected only
depends on his/her joint strategy (α̂i , ẑi ) and reputation pi .
The final optimal task allocation y∗ can also be regarded
as users’ available resource constrained by zi . min_value
is a temp value in “repeat-until” loop to store the aggregate
cost-effectiveness ratio. User utility can be calculated as the
difference between payment and real cost.

C. Property Analysis

Several favored properties of VCG mechanism [13] are
expected to satisfy:

Definition 8 (Truthfulness): Truthfulness is satisfied when
the dominant strategy of user Ui is to submit true cost
αi and sharing time characterized by zi , i.e., fi (αi , zi ) ≥
max{ fi (α̂i ), fi (ẑi )},∀i ∈ �′v .

Definition 9 (Individual Rationality): Individual Rationality
holds when user utility is not less than 0, i.e., fi (αi , zi ) ≥ 0,
∀i ∈ �′v .

Next, we will analyze the properties of our proposed VCG
game-based mechanism.

Proposition C.1: The VCG game-based incentive
mechanism is truthful.

Proof: See Appendix F. �
Proposition C.2: The VCG game-based incentive

mechanism is individual rational.
Proof: See Appendix G. �

Algorithm 2 VCG-Based Incentive Mechanism
Require:

User set �v ; Bid {(αi , zi )|i = 1, 2, ..., |�v |};
Reputation {pi |i = 1, · · · , |�v |}; W ;

Ensure:
Winning set �′v ; Available resource y∗;
User utility fi (αi , zi );

1: Initialize y∗i = 0; fi = 0; min_value = 0; �′v = ∅;
2: si ← αi/pi ;
3: repeat
4: i ← arg min

i
{si | pi ≥ pth, i ∈ �v \ �′v};

5: y∗i ← min(zi , W );
6: W ← W − y∗i ;
7: min_value← min_value + y∗i si ;
8: �′v ← �′v

⋃{i};
9: until W = 0

10: for i ∈ �′v do
11: τi ←

[
minyl≤zl

∑
l∈�′v / i yl sl

]
−
[∑

l∈�′v / i y∗l sl

]
;

12: fi (α̂i , ẑi )← pi · τi − y∗i αi ;
13: end for

Remark: Propositions C.1 and C.2 demonstrate our pro-
posed VCG game-based incentive mechanism can guarantee
the desired economic properties, i.e., Truthfulness and Indi-
vidual Rationality. In that way, users will have the incentives
to participate and submit true cost and sharing time, making
it efficient to allocate tasks. Accordingly, without malicious
users considered, all the users should have a reputation close
to 1.

Proposition C.3: The VCG game-based incentive
mechanism is robust to the uncertainty of sharing time.

Proof: See Appendix H. �
Remark: Proposition C.3 demonstrates that for a given

sharing period, the platform can make user utility always
below zero by choosing the value of penalty γ . Therefore,
users will lose the incentive to submit a longer sharing time.

VI. DISCUSSIONS

A. Impact of Wireless Environments

Unlike wired equipment, network resources possessed by
mobile devices are spatially and temporally diverse due to
the location-dependent and time-varying properties of wireless
links. For example, the network performance of mobile devices
in an indoor environment with many obstacles tends to be
poorer than that in an open area. Users may measure and post
their idle resources on the platform. Such a method is simple
but can yield rough estimation of available resources within the
sharing period, making it suitable for some dynamic environ-
ments. However, since the sharing period could be relatively
short in our system, the above estimation may be enough to
handle most practical scenarios. Besides, user mobility further
strengthens the uncertainty of network resources in wireless
environments. In our model, such diversity is reflected in the
heterogeneity of network resources in different mobile devices.
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B. Impact of Power Consumption

In our model, users can connect to the social network
through either wired equipment (e.g., PCs and laptops) or
mobile devices, wherein significant difference exists among
them in some aspects. Mobile devices are usually driven by
batteries, where the power supply is very limited. Generally,
failing to make rational use of energy may cause undesirable
and even fatal consequences to users. For any rational user,
the sharing resources will impose a power constraint, i.e., the
maximum power consumption allowed for users’ computing
jobs. Such a constraint is mainly dependent on the residual
energy but may also account for other factors like the exclusive
or emergent usage of mobile devices. But for wired equipment,
the power constraint is very large, which can be neglected in
our model. Hence, it’s worthy mentioning that our mechanism
is completely compatible with the heterogeneous power con-
sumption patterns.

C. Impact of User Heterogeneity

In this section, we study the impact of user heterogeneity
in tie strength and reputation. Each user specifies a certain tie
strength and reputation. Thus our sharing mechanism based
on user heterogeneity characterizes a more realistic scenario.
Moreover, in social networks, traditional definitions about
fairness and efficiency are not applicable any more. The het-
erogeneity in tie strength and reputation constitutes the essence
of our incentive mechanism and we can explore economic
potential from it. Specifically, our mechanism can encourage
users with strong social relationship and high reputation share
idle resources, which are validated by simulation results.

VII. CASE STUDY

In this section, we will conduct trace-driven simulations
using the dataset from Facebook5 [24]. The data we obtained
consist of ten users’ ego networks which partially overlap
with each other. Note that the network model is an undirected
weighted graph, where the edge weight (i.e., tie strength) is
determined by 42 features extracted from their profiles (e.g.,
eduction, hobbies, etc.) and the number of common friends.

As for the nodes in ego networks, we collect the profiles
of 10 popular mobile devices, including Apple iPhone 5, Nokia
Lumia 920, Samsung N7100, etc., and assume each node
is a random type among them. To facilitate the simulations,
three major types of resources are of our interests, i.e., CPU,
RAM and ROM. The amount of idle resources at each user
is uniformly distributed within [10%, 70%]. Besides, each
user will randomly impose a power constraint within [500,
1000]mW unless it is specified. Each node’s resource demand
follows the uniform distribution within [0.5, 3] units of CPU
resources, [100, 800]MB RAM and [1, 8]GB ROM.

A. Social Fairness and Efficiency

It is worth studying the fairness/efficiency of our DRF-based
sharing algorithm and the influence of ε-DRF on sharing.

5Traces from Twitter and Google+ are also studied under the proposed
scheme, but we omit them to avoid the repeated discussions, since most of
the following results apply to Twitter and Google+ as well.

Fig. 2. Illustration of workload imbalance for different resources.

Fig. 3. Illustration of ε-DRF in social networks.

Fig. 4. Influence of ε on social fairness performance.

To demonstrate the efficiency of bottleneck resource, the
multi-type workload imbalance across all nodes is studied in
Fig. 2. For several specific types of resources, experimental
results of workload imbalance and the corresponding theoret-
ical bounds are marked, validating Proposition A.3. Besides,
we observe that the dominant workload imbalance reaches the
minimum (θ = 1), which is consistent with Proposition A.2.

In Fig. 3, we demonstrate how the efficiency of ε-DRF
varies with ε and compare it with the traditional DRF. When
ε = 0, DRF is identical to ε-DRF in yielding the least
efficient result. As ε increases, ε-DRF gradually improves
the aggregate user SER. Furthermore, when ε reaches
maxv,i π(1, φv i) = 162, the efficiency-optimal result is
obtained, and the aggregate user SER is then stabilized at
the maximum. Note that in our simulations, even traditional
DRF is also relatively efficient (above 89% of the optimal
result), which might be occasional due to the sparsity of social
relationship matrix.

On the other hand, the increase of ε does harm to the
social fairness, as shown in Fig. 4. When ε = 0, i.e., the
exact DRF, the distribution of resource allocation among
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Fig. 5. User utility versus cost-effectiveness ratio.

Fig. 6. User utility versus available resource.

users corresponds to their degrees of socialization,6 which
is the fairest result in social networks. However, when ε is
raised, such social fairness is not maintained anymore since
the resource allocation patterns gradually deviate from their
degrees of socialization. In such cases, even though the
majority of users do obtain more resources, the increase is not
matched with their degrees of socialization, which may dis-
courage their intention of socialization. This partially validates
Propositions B.3-B.5. Hence, ε-DRF can improve the effi-
ciency at the cost of a certain degree of fairness.

B. Incentive for Resource Sharing Among Users

We go further to investigate the practical and efficient
VCG game-based incentive mechanism for resource shar-
ing, where both user social relationship and participation
incentive are involved. Specifically, we explore the economic
potential of sharing incentive from two perspectives: users’
cost-effectiveness ratio and available resource. Here available
resource denoted by bi is introduced to refer to the maximum
resources that users are willing to share. Actually, it equals to
the product of user unit social relationships φvi∑

v∈Vi
φvi

and total

idle resources
∑

k∈M c(k)
i . We consider there are ten selected

users among winning set �′v . Each of them are in ascending
cost-effectiveness ratio si .

Figure 5 illustrates the influence of cost-effectiveness ratio
si on user utility. It is obvious that user utility is inversely
proportional to si . According to the definition of si (i.e.,
si = αi/pi ), the influence on utility mainly depends on
reputation pi and true cost αi . On the one hand, as mentioned
in VCG mechanism, users with high reputation will be given
more payment than those with low reputation. Thus user utility
increases as pi increases. On the other hand, user utility is
defined as the difference between payment and cost. That is,
use utility decreases as αi increases.

We further demonstrate how user utility changes with
respect to available resource in Fig. 6. Similar to Fig. 5, the
overall trend in user utility is decreasing, mainly determined

6Here, a certain user’s “degree of socialization” is determined by the total
number of friends and the tie strength between the user and his/her friends.

by cost-effectiveness ratio si . Taking these two curves together,
we observe that available resource always leads to small fluc-
tuations in user utility. The more available resource users have,
the higher utility they will get, e.g., users 4 (the most available
resource) and 9 (the least available resource). Intuitively, as for
two users with the same si , the more resource one is willing
to share, the more likely he/she is to be selected into winning
set, and the higher utility he/she will get.

Thus we conclude that our proposed mechanism is useful
to encourage four types of users to share their idle resources:
(1) users with low bid, (2) users with high reputation, (3) users
with considerable idle resources, and (4) users with strong
social relationship. As for those users belonging to one or
more types, they will have a high possibility of being selected.

VIII. CONCLUSION

We provide a novel VCG game-based incentive mechanism
for multi-resource sharing to enable social crowdsourcing
service, where the conflict between users’ social connections
and participation incentives is involved. To achieve the social
fairness-efficiency tradeoff, DRF-based multi-resource sharing
is further applied into the proposed mechanism. Numerical
results validate the theoretical analysis about social fairness
and efficiency of our sharing incentive mechanism.

In this paper, we focus on the issue of offline resource
sharing, where any user takes on the predetermined roles of
sharing or requesting resource over each time period. In the
future work, we will consider the online sharing scenario. It is
interesting to extend our system model to incorporate changing
user role and dynamic joining/leaving system. In addition,
it would be worthwhile to further study the effect of differ-
ences of user reputation or owned resources, e.g., a superuser
with abundant resources and low bid joins system. We believe
that system performance such as sharing efficiency and user
experience is also related to the prediction accuracy of social
tie among users, which can be enabled by Context-Aware and
Big-Data techniques.

APPENDIX A
PROOF OF THEOREM 1

Proof: We first prove the necessity. We consider the
contradiction and assume that there exists a certain node v that
does not have any bottleneck resources at some user i ∈ �v ,
which corresponds to the following two possible cases.

Case 1:
∑

v∈Vi
α

(k)
iv < 1 (∀k ∈ M). If we further increase

xiv by mink∈M
c(k)

i

r(k)
v

(1 −∑v∈Vi
α

(k)
iv ), i.e., user Ui undertakes

more of v’s jobs, v’s dominant SER share μi,v xiv will also
be raised without leading to the reduction of any other node’s
dominant SER share at user Ui .

Case 2:
∑

v∈Vi
α

(k)
iv = 1 for some resource k ∈ M but

xiv ′μi,v ′ > xivμi,v for a certain node v ′ �= v who demands
resource k at user Ui . In this case, we can decrease the
allocated tasks of v ′ by an arbitrary small number ε and get
new available resources amounting to �σ = (εr (1)

v ′ , · · · , εr (m)
v ′ ).

Hence, the number of the allocated jobs as well as dominant
SER share of v ′ can be increased using the above resource
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vector �σ without decreasing the dominant SER share of any
other node v ′′ whose xiv ′′μi,v ′′ ≤ xivμi,v at user Ui .

Thus, the necessary condition of DRF in social networks has
been proved since both cases contradict the definition of DRF
in social networks. The sufficiency is easy to prove using the
definition of DRF, and we omit it for the brevity here. We have
completed this proof of Theorem 1. �

APPENDIX B
PROOF OF THEOREM 2

Proof: For a positive constant β, if user Ui allocates
�iv = β

μi,v
tasks to node v (∀v ∈ Si ), all nodes in Si

will increase their dominant SER share at user Ui by β.
To maintain the feasibility, we have that

∑
v∈Si

β
μi,v

r (k)
v ≤

L(k)
i , ∀k ∈ M, which means the maximum value of β is

β = mink∈M

⎛

⎜
⎝

L(k)
i

∑
v′∈Si

r(k)
v′

μi,v′

⎞

⎟
⎠ , and this explains the standing

point of (5). If β reaches the maximum, one of the m resources
will become saturated, and the resource type is exactly as (6)
shows, which is also the reason why (6) holds. Therefore,
as long as any node v in Si is allocated �iv tasks as (5)
demonstrates, we can draw the following two conclusions:

(1) Resource k̂ is saturated (i.e.,
∑

v∈Vi
α

(̂k)
iv = 1).

(2) All nodes in Si who demand resource k̂ will get the
same dominant SER share at user Ui . It further implies that
they also have equal or greater dominant SER share at Ui when
compared with all other nodes in Si that demand resource k̂,
considering that some of such nodes in Si may have already
been excluded from Si in previous loops.

The two conclusions above indicate that nodes in Si (who
also demand resource k̂) will have a bottleneck resource k̂.
If Algorithm 1 continues so that Si = ∅, all nodes in Vi

will have a bottleneck resource at user Ui . Finally, when
the algorithm is done for all users, any node v ∈ V will
have a bottleneck resource at each user i ∈ �v . According
to Theorem 1, we can get Algorithm 1 achieves the DRF in
the proposed model. �

APPENDIX C
PROOF OF PROPOSITION A.1

Proof: • Pareto Efficiency: By Theorems 1 and 2, under
the allocation of Algorithm 1, any user Ui has a saturated
resource k̂ at node v ∈ Vi . If we hope to increase Ui ’s
dominant SER share, the allocations of resource k̂ must also
be increased proportionally. There are two cases:

Case 1: Resource k̂ is exclusively demanded by Ui at
node v. In this case, it would be impossible to provide more
resource k̂ and more dominant SER share for Ui .

Case 2: There are other users who also demand resource k̂ at
v (we denote them by the set D). If we allocate more resource
k̂ to Ui , at least one user U j in the set D will receive less
resource k̂. It means the increase of Ui ’s dominant SER share
will cause the reduction of U j ’s dominant SER share.

Hence, the allocation of Algorithm 1 is Pareto Efficient.
• Sharing Incentive: If any resource k ∈ M at node

v ∈ V is allocated to users in �v in an equal-SER-share

manner, it follows that α
(k)
iv π(1, φv i ) = α

(k)
jv π(1, φv j ), ∀k ∈

M, ∀i, j ∈ �v . By transforming the form, summing over
all users in �v , and using

∑
j∈�v

α
(k)
jv ≤ 1, we obtain

α
(k)
iv ≤ 1

∑
j∈�v

π(1,φvi )
π(1,φv j )

. To validate the Sharing Incentive of

our scheme, we only need to prove that for any user U j ,
the real share of his/her dominant resources at any node
v ∈ Vj is more than 1

∑
l∈�v

π(1,φv j )
π(1,φvl )

. For a given node v,

let k̂ be the first saturated resource at v. Without loss of
generality, we assume that Ui is allocated the maximum
SER share of resource k̂. Thus, we have α

(̂k)
i,v π(1, φv i) ≥

α
(̂k)
j,vπ(1, φv i), ∀ j ∈ �v . Since

∑
j∈�v

α
(̂k)
j,v = 1, we further

derive that
∑

j∈�v

π(1,φvi )
π(1,φv j )

α
(̂k)
i,v ≥ 1. Suppose α j,v is the real

share of U j ’s (∀ j ∈ �v) dominant resource at node v, and we

have αi,v ≥ α
(̂k)
i,v ≥ 1

∑
l∈�v

π(1,φvi )
π(1,φvl )

. According to Algorithm 1,

for any user U j in �v , we have μ j,v ≥ μi,v , which means
that α j,vπ(1, φv j ) ≥ αi,vπ(1, φv i ) ≥ π(1,φvi )

∑
l∈�v

π(1,φvi )
π(1,φvl )

. Thus,

by an equivalent transformation of the above inequality, we
conclude that α j,v ≥ 1

∑
l∈�v

π(1,φv j )
π(1,φvl )

will be satisfied for j ∈ �v .

Therefore, Sharing Incentive has been proved.
• Envy-Freeness: For a given user Ui who envies another

U j at node v, user U j must demand more types of resources
than Ui and have strictly higher SER shares of every resource
that Ui requires. According to Algorithm 1, the allocation to
U j is done no later than Ui , and thus xivμi,v ≥ x jvμ j,v , which
means that the share of Ui ’s dominant resource at node v is
equal or greater than that of U j . Hence, Ui will be allocated
a larger amount of at least one type of resources than U j ,
violating the previous assumption.
• Strategy-Proofness: Suppose a given user Ui untruthfully

submits his/her resource demand as �ri · �H , where �H =
(H (1), · · · , H (M)) is the “untruthful gain” for multi-type
resources. Since Algorithm 1 allocates computing resources
on a job scale, all the resources that Ui demands must be
raised proportionally so that Ui can actually fulfill more jobs.
In other words, if we can prove that the allocation of the
resource with the lowest “untruthful gain” cannot be increased,
Ui will lose the incentive to cheat and the Strategy-Proofness
is maintained. Specifically, we denote Ĥ = mink∈M H (k) as
the lowest “untruthful gain” and k̄ = arg mink∈M H (k) as the
resource with this gain. Under the untruthful demand �ri · �H , the
dominant SER share that Ui will gain in each “repeat-until”

loop is β̄ = mink∈M

⎛

⎜
⎝

L(k)
v

∑
j∈Sv\{i}

r(k)
j

μ j,v
+ H (k)r(k)

i
H
′
μi,v

⎞

⎟
⎠ , where H

′
is

the “untruthful gain” of Ui ’s dominant resource at node v.
According to the proof of Theorem 2, Ui will be

allocated �̄iv = β̄

H ′μi,v
jobs in each loop, so Ui

will receive resource k̄ amounting to �̄iv Ĥr (k̄)
i =

r(k̄)
i

μi,v
mink∈M

⎛

⎜
⎝

L(k)
v

∑
j∈Sv\{i}

H
′
r(k)

j
Ĥμ j,v

+ H (k)r(k)
i

Ĥμi,v

⎞

⎟
⎠ . Since H

′
Ĥ
≥ 1 and
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Hk

Ĥ
≥ 1, we have

∑
j∈Sv\{i}

H
′
r(k)

j

Ĥμ j,v
+ H (k)r(k)

i
Ĥμi,v

≥ ∑
j∈Sv

r(k)
j

μ j,v
.

This naturally follows that �̄iv Ĥr (k̄)
i ≥ �ivr (k̄)

i , where �iv is
the number of allocated jobs for Ui at node v in each “repeat-
until” loop under the truthful submission. We can conclude the
untruthful submission of resource demands will not increase
the real allocation of resource k̄ and the Strategy-Proofness
has been proved. �

APPENDIX D
PROOF OF PROPOSITION A.3

Proof: For a given node v ∈ V , its workload in
terms of resource k (we will refer it as workload k in the

following) is τ
(k)
v =∑

i∈�v

r(k)
i xiv

c(k)
v

. Suppose k̂ is the dominant

workload type at node v. According to the inequality, we can

derive τ
(̂k)
v

τ
(k)
v
=

∑
i∈�v

r (̂k)
i xiv

c(̂k)
v

∑
i∈�v

r(k)
i xiv

c(k)
v

≤ ∑
i∈�v

r (̂k)
i c(k)

v

c(̂k)
v r(k)

i

≤ ∑
i∈�v

Aiv c(k)
v

r(k)
i

.

Proposition A.2 shows that τ
(̂k)
v = 1. Accordingly, we have

τ
(k)
v ≥ 1

∑
i∈�v

Aiv c(k)
v

r(k)
i

, ∀v ∈ V , which implies that for any

v ∈ V , its workload k is lower-bounded (or the utilization
of resource k at v is lower-bounded). Since a certain type
of workloads can achieve at most 100% at any node, the
workload imbalance among all nodes in terms of resource k

is θ(k) = maxv,l∈V
τ

(k)
v

τ
(k)
l

≤ maxv∈V
∑

i∈�v

Aiv c(k)
v

r(k)
i

. The above

bound can be reached in some cases. �

APPENDIX E
PROOF OF PROPOSITION A.4

Proof: By Theorems 1 and 2, each user Ui , i ∈ N
has at least one saturated resource, and we assume that

one of such resources is k̂. This implies
∑

v∈Vi

xiv r (̂k)
v

c(̂k)
i

= 1.

Since the dominant SER share corresponds to the maximum
share of all resources and π(x, y) is linear of x , we obtain
∑

v∈Vi
μi,v xiv ≥ ∑

v∈Vi

xiv r (̂k)
v

c(̂k)
i

π(1, φv i) ≥ minv∈Vi π(1, φv i).

Meanwhile, for the optimal allocation X∗ at user Ui , we
have

∑
v∈Vi

μi,v x∗iv ≤ m maxv∈Vi π(1, φv i). Therefore, at
user Ui , the social welfare of the optimal result yielded by
Algorithm 1 is at least

minv∈Vi π(1,φvi )

m maxv∈Vi π(1,φvi )
. The social welfare of

the efficiency-optimal allocation obtained by Algorithm 1 is
lower-bounded by B

m . �

APPENDIX F
PROOF OF PROPOSITION C.1

Proof: Intuitively, users have no incentive to submit a
shorter sharing time since it will not contribute to the utility
and may cause extra cost like battery consumption. Thus we
only need to consider the case where a user Ui submits the cost
α̂i and over submits his/her promised sharing time calculated
with the promised number of tasks ẑi . The true cost is αi and
the true number of tasks he/she finish within the time limit
is zi .

First consider Ui does not over submit the sharing time,
then the true utility is

fi (α̂i ) = pi

⎧
⎨

⎩

⎡

⎣min
yl≤zl

∑

l∈�′v / i

yl ŝl

⎤

⎦−
⎡

⎣
∑

l∈�′v / i

y∗l ŝl

⎤

⎦

⎫
⎬

⎭
− y∗i αi

= pi

⎧
⎨

⎩

⎡

⎣min
yl≤zl

∑

l∈�′v / i

yl ŝl

⎤

⎦−
⎡

⎣
∑

l∈�′v
y∗l ŝl

⎤

⎦+ y∗i
(
ŝi − si

)
⎫
⎬

⎭
.

(12)

In order to maximize the utility, we should maximize the
second and third part in the brace of (12), since the first part
has nothing to do with Ui . The second part is the gain or
loss that Ui misreports the cost and the third part is the effect
on the allocation and total cost by the misreport. The gain or
loss in the second part is cancelled out by the third part and

then the problem is to maximize −
[
∑

l∈�′v / i
y∗l ŝl

]

− y∗i si . Thus

Ui will not increase the utility by misreporting the cost, and
submitting the true cost is a weakly dominant strategy.

If Ui over submits his/her sharing time, we have
yi
′ ≤ zi ≤ ẑi , and the utility becomes

fi (α̂i , ẑi )

= pi

⎧
⎨

⎩

⎡

⎣min
yl≤zl

∑

l∈�′v / i

yl ŝl

⎤

⎦−
⎡

⎣
∑

l∈�′v ,yi≤yi
′
y∗l ŝl

⎤

⎦+y∗i
(
ŝi − si

)
⎫
⎬

⎭
−κγ

≤ pi

⎧
⎨

⎩

⎡

⎣min
yl≤zl

∑

l∈�′v / i

yl ŝl

⎤

⎦−
⎡

⎣
∑

l∈�′v ,yi≤zi

y∗l ŝl

⎤

⎦+ y∗i
(
ŝi − si

)

⎫
⎬

⎭
.

So if Ui over submits the sharing time and fails to finish the
tasks, he/she will surely get a lower utility. Thus truly submit
the sharing time is also a weakly dominant strategy.

Above all, we conclude that the mechanism is truthful. �

APPENDIX G
PROOF OF PROPOSITION C.2

Proof: If user Ui does’t receive any task allocated by the
platform, i.e., yi = 0, then his/her utility fi = 0. Therefore,
we only need to consider the case where Ui is included into
winning set. Derived by (12) when ŝi = si , the utility of Ui is
fi (αi , zi ) = pi

{[
minyl≤zi

∑
l∈�′v / i yl sl

]
−
[∑

l∈�′v y∗l sl

]}
As

the first part in the brace is over a larger set than the second
part, we obtain min

yl≤zi

∑

l∈�′v / i
ylsl ≥ ∑

l∈�′v
y∗l sl . Hence, we can

easily get fi (αi , zi ) ≥ 0 and then the proof is completed.
�

APPENDIX H
PROOF OF PROPOSITION C.3

Proof: Suppose user Ui only knows the interval of the
sharing time he/she can achieve, thus the total tasks he/she can
finish within the time limitation is in an interval as well, which
is assumed to be [z(1)

i , z(2)
i ]. Assume that zi obeys uniform
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distribution, and the corresponding probability distribution
function is pd f (i) = 1

z(2)
i −z(1)

i

. The expected utility of Ui is

E( fi (αi , zi ))

= E

⎧
⎨

⎩
pi

⎡

⎣min
yl≤zi

∑

l∈�′v / i

yl sl

⎤

⎦− pi

⎡

⎣
∑

l∈�′v / i

y∗l sl

⎤

⎦

⎫
⎬

⎭
− κγ

= pi

⎡

⎢
⎢
⎣min

yl≤zi

∑

l∈�′v / i

ylsl −
ẑi∫

z(1)
i

pd f (i)

⎡

⎣
∑

l∈�′v ,yi≤yi
′
y∗l sl

⎤

⎦ dzi

⎤

⎥
⎥
⎦

− pi

⎡

⎢
⎢
⎣

z(2)
i∫

ẑi

pd f (i)

⎡

⎣
∑

l∈�′v ,yi≤ẑi

y∗l sl

⎤

⎦ dzi

⎤

⎥
⎥
⎦− γ P(zi < ẑi ).

The safest choice is ẑi = z(1)
i . If Ui increases zi by

submitting a higher sharing time, the gain of expected utility
is �E( fi (αi , zi )).Thus Ui can choose the sharing time to
make �E( fi (αi , zi )) positive. But even if Ui submits a longer
sharing time and can not fulfill all tasks, the scheme can
guarantee Ui will work as long as he/she can. The utility is

fi (α̂i , ẑi ) = pi

⎧
⎨

⎩

⎡

⎣min
yl≤zl

∑

l∈�′v / i

yl ŝl

⎤

⎦−
⎡

⎣
∑

l∈�′v ,yi≤y′
y∗l ŝl

⎤

⎦

⎫
⎬

⎭
− γ.

Thus Ui can only increase the utility by making yi
′ as large as

possible, i.e., working as long as he/she can. Based on how v
wants the tasks to be fulfilled, we choose the value of P(zi <

ẑi ) and set γ = pi

⎡

⎣
∑

l∈�′v ,yi≤z(1)
i

y∗l sl

⎤

⎦ /P(zi < ẑi ). Hence

�E( fi (αi , zi )) is below zero and users will lose the incentive
to submit a longer sharing time. In view of the uncertainty of
sharing period, we have completed the proof. �
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