
10586 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 10, OCTOBER 2025

Efficient Single-Server Private Inference
Outsourcing for Convolutional Neural Networks

Xuanang Yang , Jing Chen , Senior Member, IEEE, Yuqing Li , Member, IEEE, Kun He , Member, IEEE,
Xiaojie Huang , Zikuan Jiang, Ruiying Du , and Hao Bai

Abstract—Private inference outsourcing ensures the privacy of
both clients and model owners when model owners deliver infer-
ence services to clients through third-party cloud servers. Existing
solutions either reduce inference accuracy due to model approx-
imations or rely on the unrealistic assumption of non-colluding
servers. Moreover, their efficiency falls short of HELiKs, a
solution focused solely on client privacy protection. In this
paper, we propose Skybolt, a single-server private inference out-
sourcing framework without resorting to model approximations,
achieving greater efficiency than HELiKs. Skybolt is built upon
efficient secure two-party computation protocols that safeguard
the privacy of both clients and model owners. For the linear
calculation protocol, we devise a ciphertext packing algorithm
for homomorphic matrix multiplication, effectively reducing
both computational and communication overheads. Additionally,
our nonlinear calculation protocol features a lightweight online
phase, involving only the addition and multiplication on secret
shares. This stands in contrast to existing protocols, which
entail resource-intensive techniques such as oblivious transfer.
Extensive experiments on popular models, including ResNet50
and DenseNet121, show that Skybolt achieves a 5.4 − 7.3×
reduction in inference latency, accompanied by a 20.1 − 39.6×
decrease in communication cost compared to HELiKs.

Index Terms—Private inference, convolutional neural
networks.

I. INTRODUCTION

CONVOLUTIONAL Neural Networks (CNNs) have
exhibited exceptional performance in computer vision

tasks such as action recognition [1], target tracking [2],
and object detection [3]. Fueled by advancements in cloud
computing, a rising number of CNN model owners have
begun offering inference services to clients by deploying
their models on third-party cloud servers [4], [5], known as
outsourcing inference services. This paradigm enables model

Received 24 July 2024; revised 27 December 2024; accepted 4 April
2025. Date of publication 9 April 2025; date of current version 6 October
2025. This work was supported in part by the National Key Research and
Development Program of China under Grant 2022YFB3102100, in part by
the National Natural Science Foundation of China under Grant 62172303 and
Grant 62302343, in part by the Key Research Development Program of Hubei
Province under Grant 2024BAB018, and in part by the Key Research and
Development Program of Shandong Province under Grant 2022CXPT055.
This article was recommended by Associate Editor T. Zheng. (Corresponding
author: Jing Chen.)

The authors are with the Key Laboratory of Aerospace Information
Security and Trusted Computing, Ministry of Education, School of Cyber
Science and Engineering, Wuhan University, Wuhan 430072, China (e-mail:
whuyxa@whu.edu.cn; chenjing@whu.edu.cn; li.yuqing@whu.edu.cn;
hekun@whu.edu.cn; sdhxj66@whu.edu.cn; jlumos@whu.edu.cn;
duraying@whu.edu.cn; bh0036@whu.edu.cn).

Digital Object Identifier 10.1109/TCSVT.2025.3559101

owners to circumvent the cost of maintaining dedicated online
services. For example, Sygic, a navigation company with over
200 million users, provides travel photo classification and
recommendation functions by hosting its models on Amazon
cloud servers [6].

Given potential sensitivity of clients’ input and inference
outcomes, it is crucial to protect them from disclosure to model
owners or cloud servers [7], [8]. For instance, pathological
data and diagnostic results within disease inference services
are sensitive personal information under the General Data
Protection Regulation (GDPR) [9]. To address this concern,
Private Inference (PI) has been proposed, enabling inference
without compromising client privacy through cryptographic
techniques. Advanced methods [10], [11], [12] tailor secure
two-party computation (2PC) protocols to the unique char-
acteristics of linear and nonlinear calculations within CNNs,
executing these protocols between the client and server.
Among them, HELiKs [13] stands out as the state-of-the-art.

Regrettably, these protocols are unfit for outsourcing infer-
ence services as they deploy the model on the server in
plaintext. Remarkably, models are the intellectual property
of model owners, requiring substantial amounts of data and
computing resources for training. Moreover, these models may
have constituted competitive advantages in various business
fields. Consequently, model owners aspire to conceal model
parameters from both cloud servers and clients to preserve
their commercial interests [14], [15].

A few PI solutions tackle the intricate challenge of preserv-
ing the privacy of both the client and model owner, yet they
come with inherent limitations. For one thing, schemes utiliz-
ing Homomorphic Encryption (HE) to protect client input and
model parameters [16], [17] suffer from reduced accuracy and
high latency. Specifically, due to HE’s inefficiency in handling
nonlinear calculations, these methods approximate nonlin-
ear functions with low-degree polynomials, which decreases
inference accuracy. Additionally, they have to invoke time-
consuming bootstrapping operations to alleviate the noise of
HE ciphertext, resulting in high inference latency. For another,
to overcome the limitations imposed by HE, the other methods
[5], [14] opt to protect the client input by secretly sharing
it between non-colluding servers. Nevertheless, fulfilling the
stringent requirement of non-colluding servers is unrealis-
tic and burdensome [18], [19]. Furthermore, these schemes
remain less efficient than HELiKs, as their linear calculation
methods involve high HE computation and communication

1051-8215 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0883-6278
https://orcid.org/0000-0002-7212-5297
https://orcid.org/0000-0003-0816-5777
https://orcid.org/0000-0003-3472-419X
https://orcid.org/0000-0003-0591-4170
https://orcid.org/0000-0002-3634-3385
https://orcid.org/0000-0002-9719-9313

YANG et al.: EFFICIENT SINGLE-SERVER PRIVATE INFERENCE OUTSOURCING FOR CNNs 10587

TABLE I
A HIGH-LEVEL COMPARISON OF PI SCHEMES. “MODEL PRIVACY” MEANS THAT THE SCHEME PROTECTS MODEL PARAMETERS; “NATIVE MODEL”

INDICATES THAT THE SOLUTION DOES NOT APPROXIMATE CNN INFERENCE; “NC SERVERS” REPRESENTS THAT THE SCHEME RELIES ON
NON-COLLUDING SERVERS; “ONLINE” DESCRIBES THE CRYPTOGRAPHIC PRIMITIVES UTILIZED IN THE ONLINE PHASE; “LINEAR” AND

“NON-LINEAR” DEPICT THE TECHNIQUES USED TO IMPLEMENT PRIVACY-PRESERVING LINEAR AND NON-LINEAR
CALCULATIONS RESPECTIVELY; THE INVOLVED CRYPTOGRAPHIC TECHNIQUES INCLUDE ADDITIVELY

SECRET SHARING (ASS), GC, HE, AND OT

complexity, and nonlinear calculations employ heavy Garbled
Circuits (GC). Developing an efficient solution for outsourcing
inference services that does not rely on non-colluding servers
or approximation presents significant challenges.

In this paper, we present a single-server private CNN
inference framework for outsourcing inference services, called
Skybolt, which avoids approximation and even surpasses the
efficiency of HELiKs. We achieve this by customizing efficient
2PC protocols that safeguard the privacy of both the client and
model owner, allowing the faithful execution of CNN calcu-
lations without any approximations. In linear calculations, we
propose a novel HE ciphertext packing algorithm for matrix
multiplication. This algorithm eliminates the computationally
expensive HE rotation operation and fully utilizes ciphertext
space, resulting in decreased computation and communication
complexity compared to HELiKs. Moreover, to alleviate the
client’s computational burden, we tailor an asymmetric pro-
tocol that offloads the computationally intensive HE matrix
multiplication tasks to the server. To further reduce infer-
ence latency, we construct a lightweight online phase by
shifting expensive HE calculations to a pre-computing offline
phase. Within nonlinear calculations, our protocol features a
lightweight online phase that only involves multiplication and
addition on secret shares. This is in contrast to existing pro-
tocols that rely on resource-intensive cryptographic primitives
such as GC and Oblivious Transfer (OT). Additionally, we
leverage the computational capabilities of Graphics Processing
Units (GPUs) to parallelize the multiplication and addition
in the online phase of both linear and nonlinear calculation
protocols, greatly decreasing inference latency.

Table I provides an overview of Skybolt’s attributes in
comparison to other schemes. To the best of our knowledge,
Skybolt is the first private inference outsourcing that protects
both the privacy of client and server without model approxi-
mations or relying on non-colluding servers, and only involves
lightweight secret sharing in the latency-sensitive online phase.

Our principal contributions are outlined as follows:

• We present Skybolt, an efficient PI framework for out-
sourcing inference services. Skybolt eliminates the need
for non-colluding servers and faithfully implements CNN
inference without approximation.

• We propose 2PC protocols that protect the privacy of both
the client and model owner. For the linear calculation
protocol, we devise a packing algorithm for HE matrix
multiplication, demonstrating reduced computation and
communication complexity than existing methods. For
nonlinear calculations, we craft a protocol that involves
only lightweight addition and multiplication of secret
shares during the online phase.

• We implement Skybolt and apply it to well-established
models, such as ResNet50, on datasets of ImageNet scale.
The performance evaluation demonstrates that Skybolt
achieves a 5.4 − 7.3× reduction in inference latency,
accompanied by a 20.1 − 39.6× decrease in communi-
cation cost compared to HELiKs.

II. RELATED WORK

Protecting users’ data while ensuring its usability when
uploaded to cloud servers has garnered significant attention
[21], [22], [23]. With technological advancements, PI has been
proposed to enable complex CNN inference on encrypted data.
We classify PI into two classes based on whether CNN model
parameters are concealed from the cloud server: (1) PI without
model protection and (2) PI with model protection.

A. PI Without Model Protection

Within this class, the cloud server holds the plaintext CNN
model. Schemes based on 2PC exhibit superior performance
by leveraging appropriate cryptographic primitives to tailor
2PC protocols that cater to the distinct characteristics of linear
and nonlinear layers within CNNs. To enhance the efficiency
of linear layer protocols, a line of work, including Gazelle
[24], GALA [12], Cheetah [20], and HELiKs [13], pack
multiple plaintexts into a single HE ciphertext, with dedicated
packing algorithms to reduce HE operations. For nonlinear
layer protocols, a series of research, such as Gazelle [24],
CrypTFlow2 [10], and Cheetah [20], devise 2PC comparison
protocols based on GC or OT.

Compared to them, our 2PC protocols additionally pro-
tect model parameters. Moreover, the online phase of our
protocols only involves lightweight elementary operations of
secret shares, amenable to GPU acceleration. Furthermore,

Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

10588 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 10, OCTOBER 2025

TABLE II
MAJOR NOTATIONS

our GDPA exhibits reduced computation and communication
complexity than existing algorithms.

B. PI With Model Protection

This category ensures the secrecy of model parameters from
cloud servers and is tailored for outsourcing inference services.
One type of methodologies [16], [17] deploys the model that
is encrypted by HE on the server for making inferences on
the client’s HE-encrypted input. Given the inefficiency of HE
in computing nonlinear functions, these schemes approximate
the ReLU activation with a square function and max-pooling
with mean-pooling. Nevertheless, this approximation not only
diminishes inference accuracy but also necessitates a retraining
process to alleviate the decline. Notably, the inference latency
in these approaches is considerable, as they have to invoke
computationally expensive bootstrapping operations to miti-
gate the noise of ciphertext.

The utilization of non-colluding servers is an effective strat-
egy for privacy-preserving outsourcing computation, which is
employed in another category of schemes [5], [14]. In these
approaches, the model owner securely deploys the model on
non-colluding servers, and the client secretly shares its input
between the servers for inference. However, the assumption of
non-colluding servers is a strong requirement that is challeng-
ing and burdensome to fulfill.

Moreover, these solutions manifest inferior efficiency in
comparison to HELiKs, which features state-of-the-art linear
and nonlinear layer protocols. Skybolt, in contrast, achieves
superior efficiency relative to HELiKs and does not rely on
non-colluding servers and approximation.

III. PRELIMINARIES

In this section, we introduce an abstraction of CNNs and
review the cryptographic primitives utilized in our solution
(major notations we use are summarized in Table II).

A. Convolutional Neural Networks

CNNs consist of a series of layers. During inference, the
first layer receives the input data and generates its output
which serves as the input to the second layer. Similarly, each
layer performs specific calculations on its input and obtains
the output that becomes the input to the subsequent layer.
The iterative process persists until the last layer generates its
output, which serves as the inference result.

According to the type of calculations involved, CNN layers
can be classified into two distinct categories: linear layers and
nonlinear layers.

Linear Layers. These layers conduct linear transformations
on the input. They comprise the Fully Connected (FC) layer,
convolutional layer, and batch normalization layer, which can
be calculated by matrix multiplication [25].

Nonlinear Layers. Nonlinear layers in CNN encompass the
max-pooling layer and activation layer. The max-pooling layer
serves the dual purpose of highlighting predominant features in
the input while concurrently reducing data dimensionality. The
activation layer is typically positioned after linear layers and
plays a pivotal role in modeling the non-linear relationship.
The default and most common activation layer is the Rectified
Linear Unit (ReLU) activation layer [26], [27]. Both the
ReLU activation layer and the max-pooling layer operate
fundamentally based on the comparison operation.

B. Cryptographic Primitives

Additive Secret Sharing (ASS). In the context of 2-out-
of-2 ASS, a pair of secrets denoted as (〈x〉0, 〈x〉1) is generated
to represent a value x and shared between two parties, where
x = 〈x〉0 + 〈x〉1. The fundamental property of ASS ensures
that a party possessing only one of these secrets cannot
gain any knowledge about x. When considering cryptographic
primitives commonly employed in PI, such as HE, OT, and
GC, ASS stands out as a lightweight option. Its computational
cost is close to that of plaintext operations.

Packed Homomorphic Encryption (PHE). HE [28], [29]
enables the direct calculation of the ciphertext [f (x)] from [x]
without decryption. For improved computational efficiency and
space utilization, PHE empowers to pack multiple elements
into a single ciphertext, permitting concurrent HE operations
on these elements in a Single Instruction Multiple Data
(SIMD) fashion [28]. The maximum number of elements
that can be accommodated within a ciphertext is defined
as ciphertext capacity, denoted as N. Skybolt utilizes the
following functions supported by PHE.
• Gen. With the input of a security parameter λ, this key

generation algorithm generates a pair of public-private
keys (pk, sk) as the output. This process is denoted as
(pk, sk)← Gen(1λ).

• Enc. Given a public key pk and a plaintext vector
X = (x0, . . ., xn−1) (n ≤ N), this encryption algorithm
outputs a ciphertext C = [(x0, . . ., xn−1)], denoted as
C ← Enc(pk, X).

• Dec. Given a private key sk and a ciphertext C =

[(x0, . . ., xn−1)], this decryption algorithm outputs the
plaintext vector X = (x0, . . ., xn−1). This process is denoted
as X ← Dec(sk,C).

• PAdd. This addition algorithm takes as input two cipher-
texts Cx = [(x0, . . ., xn−1)] and Cy = [(y0, . . ., yn−1)],
and returns C = [(x0 + y0, . . ., xn−1 + yn−1)], denoted as
C ← PAdd(Cx,Cy).

• PMul. This scalar multiplication algorithm takes as input
a ciphertext Cx = [(x0, . . ., xn−1)] and a plaintext vector
V = (v0, . . ., vn−1), and returns C = [(x0 ·v0, . . ., xn−1 ·vn−1)],
denoted as C ← PMul(Cx,V).

Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT SINGLE-SERVER PRIVATE INFERENCE OUTSOURCING FOR CNNs 10589

• PRot. This algorithm can rotate elements in a cipher-
text. For instance, it can turn [(x0, x1, x2, x3)] into
[(x3, x0, x1, x2)].

Prior work [12] has substantiated that the execution time of
PRotexceeds that of PAddand PMulby approximately 34× and
56×, respectively.

IV. OVERVIEW

We describe the system model and provide a high-level
description of Skybolt.

A. System Model

Considering the outsourcing inference service, our system
consists of three entities: the model owner, the cloud server,
and the client. The model owner utilizes the trained CNN
model to offer inference services to the client via the cloud
server. The client can submit data to the server and retrieve
the CNN’s inference results.

Threat Model. Similar to prior works [11], [20], our solu-
tion targets semi-honest adversaries, wherein all entities abide
by the protocol honestly but may seek to obtain additional
information from other participants. Specifically, the model
owner is curious about the input and inference results of
clients; the cloud server attempts to learn the model parameters
as well as the input and inference results of clients; and the
client harbors intentions of obtaining the model parameters.

Security Goals. Our security goals are two-fold. For one
thing, the input and inference results of clients should be
safeguarded from exposure to the model owner and cloud
server. For another, the model parameters should remain
undisclosed to clients and the cloud server. Our security
definition adheres to the standard ideal/real-world paradigm,
necessitating that an adversary’s perspective in the real world
remains indistinguishable from that in the ideal world.

Aligned with prior semi-honest PI schemes [11], [20],
Skybolt is not devised to withstand attacks solely reliant on
inference results, such as model stealing attacks. Nonetheless,
supplementary techniques (e.g., differential privacy [30], [31])
can be synergistically integrated into our scheme to fortify the
privacy safeguards. Specifically, differential privacy prevents
users from inferring sensitive model information, such as
training data, through repeated queries by adding noise to
model parameters or outputs. This noise can be seamlessly
incorporated in the following ways [32]: First, the model
owner can add noise to the model parameters before deploy-
ing the model to the cloud server. The resulting perturbed
model can then provide inference services through the private
inference solution. This perturbation does not interfere with
the cryptographic primitives, as the noise is added to the
model prior to executing private inference. Second, the noise
can be added to the model outputs by the cloud server.
Specifically, after executing inference protocols, the model
output is secretly shared between the client and server. The
server can add the noise to its share, ensuring that the client
receives the perturbed output and is unable to infer sensitive
details from the model outputs.

Fig. 1. The inference flow of Skybolt. ini denotes the input of the layer i,
which is the output of layer i − 1.〈ini〉0 and 〈ini〉1 are a pair of secret shares
of ini.

Moreover, our primary focus does not center on con-
cealing model structures, as this can be achieved through
non-cryptographic strategies, such as the inclusion of dummy
layers and parameters.

B. Our Solution at a High Level

Existing PI approaches for outsourcing inference services
either sacrifice inference accuracy due to model approxima-
tions or rely on the unrealistic assumption of non-colluding
servers, both of which exhibit lower efficiency compared to
HELiKs. To address these limitations, we present Skybolt, an
efficient single-server PI framework that eschews approxima-
tions. Specifically, we safeguard client input by transmitting its
secret share to the server, and complete inference by executing
our tailored 2PC protocols between the client and server. These
protocols ensure the privacy of both the client and model
owner, specifically catering to the unique characteristics of
both linear and non-linear layers within CNN. Notably, the
protocols even surpass the efficiency of HELiKs’s protocols,
which lack protection for model parameters. In the following,
we provide a high-level description of Skybolt.

Consistent with existing single-server PI schemes [12], [16],
[17], [20], the client conducts a one-time setup phase when
joining the inference service. This phase is independent of the
client’s input and only needs to be executed once per client.
In this phase, the client generates a pair of public-private keys
by invoking (pk, sk) ← Gen(1λ), sends pk to the server, and
receives secret shares of model parameters. These shares are
generated by the model owner, who selects a random value
r for each model parameter w, and then sends the shares
〈w〉0 = w−r and 〈w〉1 = r to the client and server, respectively.
This will not pose a significant burden on the client’s storage,
given that well-established models like ResNet50 (with over
25 million parameters) only require about 100MB of memory.

When the client makes queries, the client and server com-
plete the inference phase by conducting our 2PC protocols,
which are tailored to suit the distinct characteristics of both
linear and nonlinear layers within CNN. Specifically, each
protocol starts with the client and server secretly sharing the
input to the layer, and ends with them secretly sharing the
layer’s output. This paradigm enables the client and server to
stitch our protocols sequentially to complete inference layer by
layer, as shown in Fig. 1, while safeguarding the intermediate

Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

10590 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 10, OCTOBER 2025

data from leakage to either the client or server. Initially, the
client generates a random matrix R of the same size as its
input in0 and then sends 〈in0〉1 = in0 − R to the server while
retaining 〈in0〉0 = R. Finally, the output of the last layer is
shared between the client and server, and the server sends
its share to the client who recovers the inference result. Our
protocols guarantee that the client remains oblivious to model
parameters, and the server can learn nothing about the client’s
data and model parameters.

V. 2PC PROTOCOLS FOR CNN INFERENCE

In this section, we describe our 2PC protocols utilized in
the inference phase of Skybolt.

A. Linear Layer Protocol

Linear layers perform linear transformations on the input,
typically achieved by matrix multiplication. To implement
privacy-preserving computation, we customize a 2PC protocol
for matrix multiplications, denoted as PMulMat.

Recall that in linear layers, the client and server secretly
share the parameter matrix W and input matrix X. That
is, the client and server hold (〈W〉0, 〈X〉0) and (〈W〉1, 〈X〉1)
respectively. PMulMatenables them to jointly compute the
secret shares 〈Y〉0 and 〈Y〉1 of the output matrix Y = W · X,
while ensuring the privacy of W, X, and Y. In the following
of this subsection, we represent the dimensions of W and X
as (m, n) and (n, k), respectively.

The computation of Y can be expressed as: Y = W · X =

(〈W〉0+ 〈W〉1)(〈X〉0+ 〈X〉1) = 〈W〉0 · 〈X〉0+ 〈W〉0 · 〈X〉1+ 〈W〉1 ·
〈X〉0 + 〈W〉1 · 〈X〉1. Since 〈W〉0 · 〈X〉0 and 〈W〉1 · 〈X〉1 can be
calculated by the client and server respectively, the crux lies
in the calculation of the cross-product terms 〈W〉0 · 〈X〉1 and
〈W〉1 · 〈X〉0. Note that if either the client or server acquires
any of the cross-product terms, it can learn the counterpart’s
share of W or X, thereby deducing W or X. To address this
security concern, we focus on the method that enables the
client and server to secretly share these cross-product terms.
This ensures that they can add their respective shares of the
terms and 〈W〉0 · 〈X〉0 or 〈W〉1 · 〈X〉1 to secretly share Y.

We utilize HE and ASS techniques to secretly share the
cross-product terms. This method enables two parties, P0 and
P1, who possess the matrices A and B respectively, to share
D = A · B without revealing A, B, or D. Specifically, P1 first
homomorphically encrypts B and transmits the ciphertext [B]
to P0. Then, P0 performs HE matrix multiplication on A and
[B] to obtain a ciphertext [A · B]. Subsequently, P0 homo-
morphically masks the product ciphertext with a randomly
generated matrix R and sends [A · B−R] to P1 for decryption.
In this way, P0 and P1 obtain A · B−R and R, respectively, to
share D.

Building upon this method, we present further optimizations
to enhance its overall efficiency.

1) Improving He Matrix Multiplication: Numerous studies
[11], [12], [13], [20], [24], [33] have explored leveraging the
PHE technique and crafting packing algorithms to improve
the HE matrix multiplication, which dominates their total
runtime and communication cost. For example, the naive

Fig. 2. An example of calculating the inner product of Ai and B j homomor-
phically by “rotate-and-sum”.

method [24] packs each column of B into a single ciphertext
[B j] (0 ≤ j < k) and encodes each row of A into a single vector
Ai (0 ≤ i < m). To derive the ciphertext [A · B], it computes
the inner product for each Ai and [B j] homomorphically. To
calculate the inner product, it first invokes PMulto compute the
element-wise product of Ai and [B j], obtaining a ciphertext
Ci, j = [Ai,0 · B0, j, Ai,1 · B1, j, . . . , Ai,n−1 · Bn−1, j]. Here, a key
challenge arises: direct summation of elements within Ci, j is
not natively supported by PHE. Consequently, it has to execute
the “rotate-and-sum” process log(n) times as shown in Fig. 2.
This approach necessitates a total of m · log(n) · k executions
of PAddand PRotoperations, along with m ·k PMul operations,
transmitting 2 · m · k ciphertexts in total.

A long line of works concentrate on redesigning pack-
ing algorithms to minimize HE operations, particularly the
resource-intensive operation PRot. However, the vast major-
ity of them, including HELiKs, still rely on PRotto align
ciphertext vectors with plaintext vectors and aggregate ele-
ments within the same ciphertext. Cheetah [20] avoids PRotby
packing both A and B into polynomials and deriving A · B
from coefficients of the polynomial product. Nevertheless, this
approach invokes extra HE extraction operations to isolate
desired coefficients into individual ciphertexts, in order to
prevent potential information leakage from other coefficients.
This significantly increases the communication overhead.

a) Greedy Diagonal Packing Algorithm: This motivates
us to tailor a packing algorithm to eliminate both PRotand
extraction, thereby reducing the overhead of calculating the
HE matrix multiplication, called GDPA. To avoid extraction,
GDPA does not derive matrix multiplication from polynomial
products. Instead, it packs both A and B into vectors in a diag-
onal order. This diagonal packing inherently aligns ciphertext
vectors with plaintext vectors, while ensuring that elements
to be aggregated within the inner product calculation are
distributed across multiple ciphertexts, thereby eliminating the
need for PRot. Moreover, GDPA makes better use of cipher-
text space by greedily accommodating as many diagonals as
possible in a single ciphertext, unlike existing algorithms that
underutilize ciphertext slots.

Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT SINGLE-SERVER PRIVATE INFERENCE OUTSOURCING FOR CNNs 10591

We now detail GDPA. Considering that matrix multiplica-
tion does not satisfy commutative law, we devise different
encoding methods for the multiplicand matrix A and the
multiplier matrix B, denoted as Pack0 and Pack1 respectively.
In the following, for simplicity of presentation, we assume that
(m · k) | N and N | (m · n · k), and set z = m·n·k

N and t = N
m·k .

This can be easily satisfied by padding matrices with zeros
and disusing the last N mod (m · n · k) slots of ciphertexts. For
cases with m · k > N, we can split matrices into submatrices
and process them independently.
Pack0. It encodes A diagonally into z vectors of length N,

denoted as (A(0), A(1), . . . , A(z−1)). Specifically, A(i)(0 ≤ i < z) is
composed of k replicas of a subvector. The subvector of A(i)

consists of t adjacent diagonals of A as follows, in which we
omit mod n in the second element of subscripts.0BBB@

A0,i·t, A1,i·t+1 . . ., Am−1,i·t+m−1,
A0,i·t+1, A1,i·t+2 . . ., Am−1,i·t+m,

...
A0,i·t+t−1, A1,i·t+t . . ., Am−1,i·t+t+m−2

1CCCA
Pack1. It encodes B in diagonal order into z vectors of

length N, denoted as (B(0), B(1), . . . , B(z−1)). B(i)(0 ≤ i < z)
is composed of k subvectors and each subvector encodes t
diagonals of B. The j-th (0 ≤ j < k) subvector of B(i) is as
follows, wherein we omit mod n and mod k in the first and
second elements of subscripts, respectively.0BBB@

Bi·t, j, Bi·t+1, j+1, . . ., Bi·t+m−1, j+m−1,
Bi·t+1, j, Bi·t+2, j+1, . . ., Bi·t+m, j+m−1,

...
Bi·t+t−1, j, Bi·t+t, j+1, . . ., Bi·t+t+m−2, j+m−1

1CCCA
We use the above algorithms to pack A and B into plaintext

vectors and ciphertext vectors respectively, and derive the
matrix multiplication D = A · B by performing HE operations
on the vectors. First, for 0 ≤ i < z, we calculate the element-
wise product of A(i) and [B(i)] to obtain a ciphertext [D(i)]
using PMul. Then, we perform element-wise addition on all
[D(i)](0 ≤ i < z) to obtain a ciphertext [V] by invoking PAdd.
The vector V can be decomposed into k subvectors. The j-
th subvector (denoted as V j) is described in Equation 1, as
shown at the bottom of the page, (where modular operations
are omitted in the subscripts for clarity). Notably, aggregating
every m-th element of V j can yield a diagonal of the product
matrix D, i.e., Di,i+ j mod k =

Pt−1
l=0 V j

i+m·l (0 ≤ i < m).
To circumvent the computationally expensive
PRotoperation required for this aggregation, we strategically
perform it in plaintext after decryption. This is feasible
because our protocol uses a random matrix R to mask
V, allowing P0 and P1 to independently perform the
aggregation on R and V − R without revealing the

Fig. 3. An example of utilizing GDPA to calculate the matrix multiplication,
where grids with solid boundaries represent ciphertext. “+” and “×” denote
PAdd and PMul respectively.

matrices. This approach does not increase communication
complexity compared to existing methods, as the product
elements in their transmitted ciphertexts are sparser.
By packing both A and B diagonally, GDPA ensures
that elements to be added together appear in different
ciphertexts whenever possible, thus minimizing the number of
elements requiring aggregation and reducing communication
complexity. An example of using GDPA to calculate matrix
multiplication is shown in Fig. 3, where the ciphertext
capacity N is 12, and the matrices dimensions (m, n, k)
are (3, 2, 4).

b) Complexity Analysis: When multiplying an m × n
matrix W with an n × k matrix X, GDPA encodes the
matrices into z ciphertext vectors and z plaintext vectors
respectively, where z = dm·n·k

N e. It then performs z instances
of PMul on corresponding ciphertext and plaintext vectors.
Subsequently, PAdd is applied to all resulting ciphertexts,
requiring z − 1 instances of PAdd. The overall complexity of
GDPA is O

�
dm·n·k

N e
�
, with both PMul and PAdd operations

scaling accordingly. No PRot operations are required. For
the lower bound of the complexity, we consider the best-case
scenario where N > m · n · k, which results in only a single
PRot operation and no PAdd operations.

0BBB@
Pz−1

i=0 A0,i·t · Bi·t, j,
Pz−1

i=0 A1,i·t+1 · Bi·t+1, j+1, . . .,
Pz−1

i=0 Am−1,i·t+m−1 · Bi·t+m−1, j+m−1,Pz−1
i=0 A0,i·t+1 · Bi·t+1, j,

Pz−1
i=0 A1,i·t+2 · Bi·t+2, j+1, . . .,

Pz−1
i=0 Am−1,i·t+m · Bi·t+m, j+m−1,

...Pz−1
i=0 A0,i·t+t−1 · Bi·t+t−1, j,

Pz−1
i=0 A1,i·t+t · Bi·t+t, j+1, . . .,

Pz−1
i=0 Am−1,i·t+t+m−2 · Bi·t+t+m−2, j+m−1

1CCCA (1)

Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

10592 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 10, OCTOBER 2025

TABLE III
COMPLEXITY COMPARISON OF MATRIX MULTIPLICATION CALCULATION METHODS

Fig. 4. The methods for secretly sharing cross-product terms.

We compare GDPA with existing packing algorithms
in terms of computation and communication complexity,
as shown in Table III. GDPA avoids the most expensive
PRotoperation by eliminating the need for summing elements
within the same ciphertext or aligning vectors. While Cheetah
also eliminates PRot, it requires additional m · k extraction
operations and exhibits elevated communication complexity.
Moreover, considering that the ciphertext capacity N is typi-
cally a multiple of m · n in PI, the quantities dm

N e · k, d n
N e · k,

dm·n
N e·k, and m ·k are typically several times larger than dm·n·k

N e.
Consequently, the computation and communication complex-
ity of GDPA tends to be lower than Cheetah and HELiKs.
This stems from GDPA’s strategy of greedily packing as many
diagonals as possible within a single ciphertext.

Notably, the efficiency gains offered by GDPA are not
limited to our protocol; it can serve as a general drop-in
replacement for existing PI systems including HELiKs, which
do not safeguard the model.

2) Alleviating Burden on the Client: The current method
for sharing cross-product terms places the resource-intensive
HE calculation of [〈W〉0 · 〈X〉1 − R0] on the client, as shown
in Fig. 4a. Given the inherent computational capability gap
between the client and the server, this approach may introduce
a performance bottleneck.

a) Asymmetric Protocol: To address this limitation, we
customize an asymmetric protocol that offloads the heavy HE
calculations for masked matrix multiplication to the server,
as illustrated in Fig. 4b. Specifically, to eliminate the client-
side computation of [〈W〉0 · 〈X〉1 − R0], the client computes
the ciphertext [〈W〉0] and transfers it to the server during the

one-time setup phase, eliminating the transmission [〈X〉1] in
the inference phase. This approach not only reduces one round
of communication per linear layer during the inference phase
but also allows for further efficiency gains: by precomputing
[〈W〉0], the server can calculate [〈W〉0 · 〈X〉1−R0] concurrently
while the client generates and sends the ciphertext [X0].

b) Homomorphic Matrix Encryption Scheme: Consider-
ing that the asymmetric protocol involves the multiplication
of a ciphertext multiplicand matrix with a plaintext multiplier
matrix (and vice versa), we customize a HME scheme that
supports both functionalities, which is built upon GDPA.
The HME comprises five algorithms: GenKey, EMat, DMat,
AddMat, and MulMat.
GenKey(1λ). With the input of a security parameter λ, the

key generation algorithm invokes (pk, sk)← Gen(1λ) to obtain
a pair of public-private keys as the output.
EMat(pk, B, b). The matrix encryption algorithm takes as

input a public key pk, a matrix B, and an integer parameter
b ∈ {0, 1} used to determine the packing algorithm. It first
invokes the encoding algorithm Packb to encode B into
z vectors denoted as (B(0), B(1), . . . , B(z−1)). Then, for each
B(i)(0 ≤ i < z), the algorithm performs [B(i)] ← Enc(pk, B(i))
and outputs [B] = ([B(0)], . . ., [B(z−1)]).
DMat(sk, [V]). This matrix decryption algorithm takes as

input a private key sk and a ciphertext [V]. It first computes
V ← Dec(sk, [V]) and partitions V into k subvectors of length
N
k , denoted as V0, . . .,Vk−1. Then, it encodes these subvectors
into a matrix D as the output, where Di,i+ j mod k =

Pt−1
l=0 V j

i+m·l
for 0 ≤ i < m and 0 ≤ j < k.
AddMat(pk, [V],R). Given a public key pk, a ciphertext

[V] and an matrix R, the addition algorithm first encodes R
into k vectors of length N

k , denoted as R0, . . .,Rk−1, where
Ri,i+ j mod k =

Pt−1
l=0 R j

i+m·l for 0 ≤ i < m and 0 ≤ j < k.
Then, it concatenates these vectors, R0 to Rk−1, to form a
vector R′. Finally, it computes [R′]← Enc(pk,R′) and outputs
PAdd([V], [R′]).
MulMat([B], A, b). With the input of a ciphertext matrix [B]

and a plaintext matrix A, and an integer parameter b ∈ {0, 1},
the matrix multiplication algorithm first parses the encrypted
matrix [B] as ([B0], . . ., [Bz−1]). Then, it encodes the plaintext
matrix A into z vectors denoted as (A(0), A(1), . . . , A(z−1)) by
invoking Pack1−b. And then, for each [B(i)], the algorithm
performs Ci ← PMul([B(i)], A(i)). Finally, it invokes PAddon
all Ci to obtain a ciphertext C of the matrix multiplication as
the output.

The complete process of the PMulMatprotocol that uti-
lizes GDPA and HME is delineated in Protocol 1. Note
that [〈W〉0] is calculated by the client performing [〈W〉0] ←

Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT SINGLE-SERVER PRIVATE INFERENCE OUTSOURCING FOR CNNs 10593

Protocol 1 PMulMat
Input: The client inputs an m× n matrix 〈W〉0 and an n× k

matrix 〈X〉0. The server inputs an m× n matrix 〈W〉1, an
n× k matrix 〈X〉1, and a ciphertext matrix [〈W〉0].

Output: The client and server output m× k matrices 〈Y〉0 and
〈Y〉1 respectively, where 〈Y〉0 + 〈Y〉1 = (〈W〉0 + 〈W〉1) ·
(〈X〉0 + 〈X〉1).

1: The client computes [〈X〉0]← EMat(pk, 〈X〉0, 1) and sends
it to the server. Meanwhile, the server generates two
m× k random matrices R0 and R1, and calculates [〈W〉0 ·
〈X〉1 − R0] ← AddMat(pk, MulMat([〈W〉0], 〈X〉1, 0),−R0),
and then sends it to the client.

2: After receiving [〈X〉0], the server computes [〈W〉1 ·
〈X〉0 − R1] ← AddMat(pk, MulMat([〈X〉0], 〈W〉1, 1),−R1)
and sends it to the client. Then, the server sets 〈〈W〉0 ·
〈X〉1〉1 = R0 and 〈〈W〉1 · 〈X〉0〉1 = R1.

3: The client decrypts to get 〈〈W〉0·〈X〉1〉0 ← DMat(sk, [〈W〉0·
〈X〉1 − R0]) and 〈〈W〉1 · 〈X〉0〉0 ← DMat(sk, [〈W〉1 · 〈X〉0 −
R1]).

4: The client outputs Y0 = 〈W〉0 · 〈X〉0 + 〈〈W〉0 · 〈X〉1〉0 +
〈〈W〉1 · 〈X〉0〉0. The server outputs Y1 = 〈W〉1 · 〈X〉1 +
〈〈W〉0 · 〈X〉1〉1 + 〈〈W〉1 · 〈X〉0〉1.

EMat(pk, 〈W〉0, 0) and sent to the server during the one-time
setup phase.

3) Constructing Lightweight Online Phase: To reduce
inference latency, we extend PMulMatto the online-offline
paradigm, thereby creating a lightweight online phase. This
improvement offloads the HE operations to the prepro-
cessing offline phase that is independent of the client’s
input and executed prior to the client’s query. Our online
phase only involves addition and multiplications on secret
shares.

During the offline phase, the client and server independently
generate two random matrices, 〈S 〉0 and 〈S 〉1, with the same
dimensions as X. They then apply our method of secretly
sharing cross-product terms to share 〈W〉1 ·〈S 〉0 and 〈W〉0 ·〈S 〉1.
As a result, the client obtains 〈〈W〉1 · 〈S 〉0〉0 and 〈〈W〉0 · 〈S 〉1〉0,
while the server obtains 〈〈W〉1 · 〈S 〉0〉1 and 〈〈W〉0 · 〈S 〉1〉1. It
satisfies 〈〈W〉1 · 〈S 〉0〉0 + 〈〈W〉1 · 〈S 〉0〉1 = 〈W〉1 · 〈S 〉0 and
〈〈W〉0 · 〈S 〉1〉0 + 〈〈W〉0 · 〈S 〉1〉1 = 〈W〉1 · 〈S 〉0.

In the online phase, the client and server aim to secretly
share the cross-product terms 〈W〉1 · 〈X〉0 and 〈W〉0 · 〈X〉1.
To achieve this, the client sends 〈X〉0 − 〈S 〉0 to the server.
The server then computes 〈〈W〉1 · 〈X〉0〉1 = 〈W〉1 · (〈X〉0 −
〈S 〉0) + 〈〈W〉1 · 〈S 〉0〉1. Subsequently, the client sets 〈〈W〉1 ·
〈X〉0〉0 = 〈〈W〉1 · 〈S 〉0〉0. This results in the equality 〈〈W〉1 ·
〈X〉0〉0 + 〈〈W〉1 · 〈X〉0〉1 = 〈W〉1 · 〈X〉0, thereby securely sharing
the cross-product term 〈W〉1 · 〈X〉0. Similarly, the client and
server can secretly share the cross-product term 〈W〉0 · 〈X〉1 in
reverse.

Remarks: The online phase of the PMulMatprotocol is
limited to fundamental operations, specifically the addition
and multiplication on secret shares. These basic operations
are well-suited for parallel processing on GPUs, which we
leverage to significantly reduce online inference latency. We
achieve this by developing kernel functions that convert the

originally serial loops for matrix multiplication and addition
on secret shares into parallel GPU operations suitable for GPU
execution. Additionally, we enhance memory management and
kernel execution by carefully selecting grid and block sizes.
This approach ensures efficient workload distribution across
the GPU. Our GPU acceleration is implemented using CUDA
C++, which lacks support for modular arithmetic. To address
this, we designate an integer value as the modulus and conduct
modular operations subsequent to multiplication or addition,
all within kernel functions designed for parallel execution.
Moreover, since we set the modulus p to a power of 2,
we implement the modular operation through a lightweight
bitwise AND operation with p − 1, further reducing the
inference latency.

B. Nonlinear Layer Protocol

The basic operation of nonlinear layers within CNN is
the comparison operation. To calculate nonlinear layers in a
privacy-preserving way, we devise a 2PC comparison protocol
that can conduct element-wise comparison of two secretly
shared matrices without disclosing them, denoted as PCmp.
In PCmp, the client and server start by secretly sharing two
m × k matrices A and B. That is, they hold (〈A〉0, 〈B〉0) and
(〈A〉1, 〈B〉1), respectively. PCmpempowers them to obtain 〈Y〉0
and 〈Y〉1, respectively, where 〈Yi, j〉b = max(〈Ai, j〉b, 〈Bi, j〉b) (0 ≤
i < m, 0 ≤ j < k, b ∈ [0, 1]).

Many prior research make efforts to improve privacy-
preserving nonlinear calculations. One category of studies
opts to approximate nonlinear calculations with low-degree
polynomials to suit cryptographic primitives [10], [34], [35].
Unfortunately, this approach diminishes inference accuracy,
necessitating model retraining to mitigate the decline. Another
type of research constructs the comparison protocol utiliz-
ing cryptographic primitives [11], [20], [24]. However, these
protocols involve resource-intensive GC or OT during online
inference, which dominates their inference latency. Moreover,
the comparison protocols in existing PI schemes rely on
cryptographic primitives different from those in linear layer
protocols. Consequently, these protocols necessitate the uti-
lization of data format conversion tools, such as the ABY
framework [36], to bridge the gap, incurring extra data con-
version overhead.

This motivates us to devise online lightweight nonlin-
ear layer protocols that leverage the identical cryptographic
primitives as our PMulMatprotocol. To this end, we utilize
HE to secretly share some randomness in the offline phase
and perform lightweight operations on the shares during
the online phase to accomplish the comparison. Remarkably,
the online phase of PCmpexclusively involves basic addition
and multiplication on secret shares. We leverage GPUs to
parallelize these operations as done in PMulMat, significantly
reducing inference latency. The complete process of the
PCmpprotocol is illustrated in Protocol 2, where V and R
are m · k random vectors generated by the client and server
respectively. Additionally, U is also a random vector generated
by the server, whose elements are random positive values.
In Protocol 2, we assume that N > m · k. If the assumption

Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

10594 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 10, OCTOBER 2025

Protocol 2 PCmp
Input: The client inputs 〈A〉0, 〈B〉0, and V . The server inputs
〈A〉1, 〈B〉1, U, and R.

Output: The client and server output 〈Y〉0 and 〈Y〉1 respec-
tively.

Offline phase:
1: The client computes [V] ← Enc(pk,V) and sends [V] to

the server.
2: The server first calculates the element-wise product of

V and U homomorphically by invoking [V ◦ U] ←
PMul([V],U). Then, it masks V ◦ U by performing [V ◦
U−R]← PAdd([V ◦U], Enc(pk,R)) and sends [V ◦U−R]
to the client.

3: The client decrypts to get 〈V ◦U〉0 = Dec(sk, [V ◦U −R]).
The server sets 〈V ◦U〉1 = R. It satisfies 〈V ◦U〉0 + 〈V ◦
U〉1 = V ◦ U.

Online phase:
1: The client encodes V and 〈V ◦ U〉0 into m× n matrix V ′

and 〈V ◦U〉′0 in a row-wise manner, respectively. Then, it
computes and sends 〈A〉0 − 〈B〉0 − V ′ to the server.

2: The server encodes the elements of U and 〈V ◦ U〉1 into
m × n matrix U′ and 〈V ◦ U〉′1 in a row-wise manner
respectively. Then, it computes and sends (〈A〉0 − 〈B〉0 −
V ′) ◦ U′ + 〈V ◦ U〉′1 to the client.

3: The client performs (A − B) ◦ U′ = (〈A〉0 − 〈B〉0 − V ′) ◦
U + 〈V ◦U〉′1 + 〈V ◦U〉′0 and transmits an m× k matrix Z
to the server, where Zi, j is a randomly generated positive
value if ((A − B) ◦ U′)i, j > 0, and a non-positive random
value otherwise.

4: The client and server outputs 〈Y〉b (b ∈ {0, 1}), where
〈Yi, j〉b = 〈Ai, j〉b if Zi, j > 0 and 〈Yi, j〉b = 〈Bi, j〉b otherwise.

is not satisfied, the matrices A and B can be subdivided into
appropriate submatrices.

VI. SECURITY ANALYSIS

We now prove the security of the PMulMatand
PCmpprotocols introduced in Section V.

A. Security of PMulMat

We now prove the security of PMulMat, which can be
reduced to the security of sharing 〈W〉1 · 〈S 〉0 and 〈W〉0 · 〈S 〉1
in the offline phase. Since our processes of sharing 〈W〉1 · 〈S 〉0
and 〈W〉0 · 〈S 〉1 are irrelevant, we prove the security of them
separately in Section VI-A1 and Section VI-A2.

1) Sharing 〈W〉1 · 〈S〉0: We define the ideal matrix mul-
tiplication sharing functionality as {〈W · S 〉0; 〈W · S 〉1} ←
IMulMat{S ; W}, where 〈W · S 〉0 + 〈W · S 〉1 = W · S .

Theorem 1: Our method of sharing 〈W〉1 · 〈S 〉0 securely
computes IMulMat in the presence of semi-honest adversaries
if the underlying PHE scheme is semantically secure.

Proof: We first prove the security against a semi-
honest server. The server’s view in an execution of our
method π is viewπ

0(〈W〉1, 〈S 〉0) = {〈W〉1,RS , [〈S 〉0]}, where
〈W〉1 is the server’s input, RS is the server’s random-
ness, and [〈S 〉0] is the received message. We construct

the simulator S im0(〈W〉1, IMulMat{〈S 〉0; 〈W〉1}) as follows.
(1) Choose a random tape R∗S . (2) Initialize a matrix
S ∗ of the same size as 〈S 〉0 and choose each element
in the matrix according to the distribution. (3) Com-
pute [S ∗] ← EMat(pk, S ∗, 1). (4) Output (〈W〉1,R∗S , [S

∗]).
If the underlying PHE is semantically secure, we can
prove that {S im0(〈W〉1, IMulMat{〈S 〉0; 〈W〉1})}〈W〉1,〈S 〉0∈{0,1}∗

c
≡

{viewπ
0(〈W〉1, 〈S 〉0)}〈W〉1,〈S 〉0∈{0,1}∗ by a hybrid argument and

complete the proof against a semi-honest server.
We next prove the security against a semi-honest client.

The view of the client in an execution of our method is
viewπ

1(〈W〉1, 〈S 〉0) = {〈S 〉0,RC , [〈W〉1 · 〈S 〉0 − R0]}, where
〈S 〉0 is the client’s input, RC is the client’s random-
ness, and [〈W〉1 · 〈S 〉0 − R0] is the received message. The
simulator S im1(〈S 〉0, IMulMat{〈S 〉0; 〈W〉1}) is constructed as
follows. (1) Choose a random tape R∗C . (2) Initialize matrix
W∗ of the same size as 〈W〉1 and R∗ of the same size
as R0 and choose each element in the vectors according
to the distribution. (3) Compute [W∗ · 〈S 〉0 − R∗] from
W∗, 〈S 〉0, and R∗. (4) Output (〈S 〉0,R∗C , [W

∗ · 〈S 〉0 − R∗]).
If the underlying PHE is semantically secure, we can
prove that {S im1(〈S 〉0, IMulMat{〈S 〉0; 〈W〉1})}〈W〉1,〈S 〉0∈{0,1}∗

c
≡

{viewπ
1(〈W〉1, 〈S 〉0)}〈W〉1,〈S 〉0∈{0,1}∗ by a hybrid argument and

complete the proof against semi-honest the client. �
2) Sharing 〈W〉0 · 〈S〉1: The ideal matrix multiplication

sharing functionality is defined as {〈W · S 〉0; 〈W · S 〉1} ←
IMulMat′{W; S }, where 〈W · S 〉0 + 〈W · S 〉1 = W · S .

Theorem 2: Our method of sharing 〈W〉0 · 〈S 〉1 securely
computes IMulMat’in the presence of semi-honest adversaries
if the underlying PHE scheme is semantically secure.

The only difference between sharing 〈W〉1 · 〈S 〉0 and 〈W〉0 ·
〈S 〉1 is whether the client encrypts and transmits the share
of the multiplicand matrix 〈W〉0 or multiplier matrix 〈S 〉1.
The security proof is very similar and we omit it to avoid
redundancy.

B. Security of PCmp

The security of PCmpcan be reduced to the security of
sharing the vector element-wise product S ◦ U in the offline
phase. We define the ideal vector element-wise product func-
tionality as {〈S ◦ U〉0; 〈S ◦ U〉1} ← IVEP{S ; U}, where
〈S ◦ U〉0 + 〈S ◦ U〉1 = S ◦ U.

Theorem 3: Our method of sharing S ◦ U securely com-
putes IVEPin the presence of semi-honest adversaries if the
underlying PHE scheme is semantically secure.

Proof: We first prove the security against a semi-honest
server. The server’s view in an execution of our method π is
viewπ

0(V ,U) = {U,RS , [V]}, where U is the server’s input, RS

is the server’s randomness, and [V] is the received message.
We construct the simulator S im0(U, IVEP{U; V}) as follows.
(1) Choose a random tape R∗S . (2) Initialize a matrix V∗ of the
same size as V and choose each element in the matrix accord-
ing to the distribution. (3) Compute [V∗] ← Enc(pk,V∗). (4)
Output (U,R∗S , [V

∗]). If the underlying PHE is semantically
secure, we can prove that {S im0(U, IVEP{U; V})}V ,U∈{0,1}∗

c
≡

{viewπ
0(V ,U)}V ,U∈{0,1}∗ by a hybrid argument and complete the

proof against a semi-honest server.

Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT SINGLE-SERVER PRIVATE INFERENCE OUTSOURCING FOR CNNs 10595

We next prove the security against a semi-honest client.
The view of the client in an execution of our method is
viewπ

1(U,V) = {V ,RC , [V ◦ U − R]}, where V is the client’s
input, RC is the client’s randomness, and [V ◦ U − R] is
the received message. The simulator S im1(V , IVEP{V; U}) is
constructed as follows. (1) Choose a random tape R∗C . (2)
Initialize vector U∗ of the same size as U and R∗ of the
same size as R and choose each element in the vectors
according to the distribution. (3) Compute [V ◦ U∗ − R∗]
from V, U∗, and R∗. (4) Output (V ,R∗C , [V ◦ U∗ − R∗]). If
the underlying PHE is semantically secure, we can prove that
{S im1(V , IVEP{V; U})}U,V∈{0,1}∗

c
≡ {viewπ

1(U,V)}U,V∈{0,1}∗ by a
hybrid argument and complete the proof against semi-honest
the client. �

Remarks: The security of Skybolt relies on Random Number
Generation (RNG), which is consistent with other private infer-
ence schemes, including GALA, Cheetah, and HELiKs. We
employ several strategies to enhance security in case of poor-
quality RNG: 1) Cryptographically secure random number
generators (CSPRNGs) [37], such as OpenSSL’s RAND-
bytes, can be utilized to ensure high-quality randomness,
even in low-entropy environments. 2) To further improve
randomness, external entropy sources like hardware RNGs
[38] (e.g., Intel’s RDRAND) or operating system entropy
pools [39] can be leveraged. 3) Merging outputs from different
RNGs (CSPRNGs and external sources) helps mitigate risks
from any single low-quality entropy source [40].

VII. EVALUATION

We implement Skybolt and perform experimental compar-
isons with state-of-the-art PI schemes.

A. Evaluation Setup

1) Implementation: We instantiate Skybolt utilizing the
SEAL library [41], configuring the parameters as follows: (1)
The security parameter λ is chosen to be 128 bits. (2) The
plaintext modulus is set to 237. (3) The ciphertext modulus is
chosen to be 2105. (4) The ciphertext capacity is configured to
4096. To reduce inference latency, we leverage the parallel
processing capabilities of GPUs to parallelize the online
phase, implemented using CUDA C++. To compare with other
counterparts, we acquire the source code of Gazelle [24],
CrypTFlow2 [11], Cheetah [20], and HELiKs [13], and reim-
plement GALA [12] based on Gazelle. Notably, alongside the
HE-based linear calculation method, CrypTFlow2 proposes an
advanced OT-based method, and we denote them as CTF2(HE)
and CTF2(OT) respectively.

2) Testbed Environment: All the evaluations are conducted
on a laptop (Intel Core i5 CPU with 4 2.2 GHz cores and 8
GB memory) serving as the client, and a machine (Intel Xeon
with 14 2.4 GHz cores, 128 GB memory and NVIDIA 4090
GPU) as the server. The two machines are configured in a
LAN network setting with a bandwidth of 350 MBps.

3) Datasets and Model Architectures: We perform a com-
parative evaluation with other counterparts across diverse
well-established CNN architectures, such as SqueezeNet,
ResNet (with over 23 million parameters), and DenseNet.

Fig. 5. Runtime and communication cost comparison of matrix multiplica-
tion. The matrices dimensions within M1 to M3 are (m, n, k): (32, 32, 16),
(16, 64, 32), (64, 32, 128), respectively.

TABLE IV

RUNTIME AND COMMUNICATION COST COMPARISON
OF NONLINEAR LAYERS

This assessment encompasses classical CIFAR and ImageNet
datasets.

B. Microbenchmarks

1) Linear Layer Functions: To demonstrate the efficacy of
GDPA, we evaluate the HE matrix multiplication approaches
of the naive method, Cheetah, HELiKs, and Skybolt on three
different matrix multiplications, comparing their runtime and
communication costs. The practical runtime and communica-
tion costs of these methods are presented in Fig. 5. Skybolt
outperforms the state-of-the-art approach HELiKs by a factor
of 2.7 − 3.1 in terms of speed. Moreover, the communication
overhead of Skybolt is 3.1−3.9× smaller than that of HELiKs.
This performance improvement is attributed to the innovative
GDPA, which avoids both PRotand extraction operations, and
makes better use of ciphertext space.

2) Nonlinear Layer Functions: To compare the
PCmpprotocol with other counterparts, we evaluated their
performance in computing the activation and max-pooling
layers of SqueezeNet, ResNet50, and DenseNet121, denoted
as N1 to N6. Since HELiKs does not offer enhancements for
nonlinear calculations, our comparison focuses on PCmpagainst
state-of-the-art nonlinear protocols, CrypTFlow2 and Cheetah.

Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

10596 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 10, OCTOBER 2025

Fig. 6. Runtime and communication cost comparison on popular CNNs.

Table IV illustrates the runtime and communication costs of
these protocols. In the online latency-sensitive phase, Skybolt
exhibits a remarkable 23.6 − 82× speedup over Cheetah,
concomitant with a 2.6 − 5× reduction in communication
overhead, indicating significantly lower inference latency
in Skybolt. In terms of total runtime, Skybolt maintains a
5.6 − 9.8× acceleration over Cheetah. These improvements
are attributed to our online phase exclusively involving
lightweight addition and multiplication of ASS, allowing us
to accelerate by GPU parallelization.

C. End-to-End Inference Evaluation

Prior works have applied their source code to specific
CNNs for CIFAR or ImageNet tasks. For comparison, we
subject Skybolt to CNNs and datasets that align with existing
works. The experimental framework encompasses ResNet18,
ResNet50, ResNet101, and ResNet152 applied to the CIFAR-
10 classification task, denoted as C1 to C4. Additionally,
SqueezeNet, ResNet50, and DenseNet121 are employed for
the ImageNet classification task, identified as I1 to I3.

1) Runtime and Communication Costs: The results in Fig. 6
illustrate the online and total runtime and communication
costs. The online runtime of Skybolt achieves a 5.4 − 7.3×
reduction compared to HELiKs, indicating a significantly
lower inference latency. Concerning the total runtime, Sky-
bolt remains 1.6 − 2.2× faster than HELiKs. Moreover, our
online and total communication overhead are 20.1 − 39.6×
and 10.3 − 12.8× smaller than HELiKs. This performance
enhancement is ascribed to our novel packing algorithm and
the lightweight online phase that only involves ASS and
supports GPU acceleration.

Remarkably, compared to these PI approaches, Skybolt
provides additional protection to model parameters through
a model-sharing mechanism, performing twice the privacy-
preserving linear calculations. Despite this increased compu-
tational load, Skybolt still exhibits better performance. The

TABLE V

ACCURACY COMPARISON

performance improvement will be more pronounced when
GDPA and PCmpare applied in the same scenario as HELiKs.

2) Inference Accuracy: Skybolt upholds inference accuracy
by faithfully completing CNN inference without approx-
imation. Any potential accuracy reduction is ascribed to
the replacement of floating-point numbers with fixed-point
numbers, which is an essential step in PI schemes. Prior
research [11], [12], [20] have proven that the impact of this
inevitable replacement on accuracy is negligible. The results
in Table V demonstrate that the accuracy loss of Skybolt is
negligible.

VIII. CONCLUSION

In this paper, we propose Skybolt, a single-server PI frame-
work for outsourcing CNN inference, which is even more
efficient than HELiKs. Skybolt is founded on 2PC protocols
that ensure both client and model owner privacy, faithfully
implementing CNN inference without approximation. For
the linear calculation protocol, we develop a homomorphic
matrix encryption scheme that supports matrix multiplication
with reduced computation and communication costs. For the
nonlinear calculation protocol, we successfully construct a
lightweight online phase that only involves elementary opera-
tions of secret shares, in contrast to existing protocols entailing
heavy GC or OT. Evaluated on well-established models, Sky-
bolt reduces inference latency by 5.4 − 7.3×, along with a
20.1 − 39.6× decrease in communication cost in comparison
to HELiKs.

Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT SINGLE-SERVER PRIVATE INFERENCE OUTSOURCING FOR CNNs 10597

REFERENCES

[1] C. Wu, X.-J. Wu, T. Xu, Z. Shen, and J. Kittler, “Motion complement
and temporal multifocusing for skeleton-based action recognition,”
IEEE Trans. Circuits Syst. Video Technol., vol. 34, no. 1, pp. 34–45,
Jan. 2024.

[2] S. Zhao, T. Xu, X.-J. Wu, and J. Kittler, “Distillation, ensemble and
selection for building a better and faster Siamese based tracker,” IEEE
Trans. Circuits Syst. Video Technol., vol. 34, no. 1, pp. 182–194, Jan.
2024.

[3] B. Xu, H. Liang, W. Gong, R. Liang, and P. Chen, “A visual
representation-guided framework with global affinity for weakly super-
vised salient object detection,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 34, no. 1, pp. 248–259, Jan. 2024.

[4] W. Wang et al., “Rafiki: Machine learning as an analytics service
system,” Proc. VLDB Endowment, vol. 12, no. 2, pp. 128–140, Oct.
2018.

[5] M. Li, S. S. M. Chow, S. Hu, Y. Yan, C. Shen, and Q. Wang,
“Optimizing privacy-preserving outsourced convolutional neural net-
work predictions,” IEEE Trans. Dependable Secure Comput., vol. 19,
no. 3, pp. 1592–1604, May/Jun. 2022.

[6] Sygic Official Website. Accessed: Apr. 5, 2025. [Online]. Available:
https://www.sygic.com

[7] X. Yang, J. Chen, K. He, H. Bai, C. Wu, and R. Du, “Efficient privacy-
preserving inference outsourcing for convolutional neural networks,”
IEEE Trans. Inf. Forensics Security, vol. 18, pp. 4815–4829, 2023.

[8] X. Yang et al., “Fregata: Fast private inference with unified secure
two-party protocols,” IEEE Trans. Inf. Forensics Security, vol. 19,
pp. 8472–8484, 2024.

[9] Proposal for a Regulation of the European Parliament and of the
Council on the Protection of Individuals With Regard To the Processing
of Personal Data and on the Free Movement of Such Data (General
Data Protection Regulation), COM(2012) 11 Final, Gen. Data Protection
Regulation (GDPR), Brussels, Belgium, 2012.

[10] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
Proc. USENIX Secur. Symp., 2020, pp. 2505–2522.

[11] D. Rathee et al., “CrypTFlow2: Practical 2-Party secure inference,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020,
pp. 325–342.

[12] Q. Zhang, C. Xin, and H. Wu, “GALA: Greedy ComputAtion for linear
algebra in privacy-preserved neural networks,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2021.

[13] S. Balla and F. Koushanfar, “HELiKs: HE linear algebra kernels for
secure inference,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2023, pp. 2306–2320.

[14] Y. Liu, Y. Yang, Z. Ma, X. Liu, Z. Wang, and S. Ma, “PE-HEALTH:
Enabling fully encrypted CNN for health monitor with optimized
communication,” in Proc. IEEE/ACM 28th Int. Symp. Quality Service
(IWQoS), Jun. 2020, pp. 1–10.

[15] H. Huang, Q. Wang, X. Gong, and T. Wang, “Orion: Online backdoor
sample detection via evolution deviance,” in Proc. 32nd Int. Joint Conf.
Artif. Intell., Macao, China, Aug. 2023, pp. 864–874.

[16] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced matrix
computation and application to neural networks,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2018, pp. 1209–1222.

[17] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient multi-key homomor-
phic encryption with packed ciphertexts with application to oblivious
neural network inference,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Nov. 2019, pp. 395–412.

[18] A. Davidson, G. Pestana, and S. Celi, “FrodoPIR: Simple, scalable,
single-server private information retrieval,” in Proc. Priv. Enhancing
Technol., vol. 2023, Jan. 2023, pp. 365–383.

[19] M. Zhou, W.-K. Lin, Y. Tselekounis, and E. Shi, “Optimal single-
server private information retrieval,” in Proc. EUROCRYPT. Cham,
Switzerland: Springer, Jan. 2023, pp. 395–425.

[20] Z. Huang, W. Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast secure
two-party deep neural network inference,” in Proc. USENIX Secur.
Symp., 2022, pp. 1–19.

[21] Y. Zhang, R. Zhao, X. Xiao, R. Lan, Z. Liu, and X. Zhang,
“HF-TPE: High-fidelity thumbnail{-} preserving encryption,” IEEE
Trans. Circuits Syst. Video Technol., vol. 32, no. 3, pp. 947–961,
Mar. 2022.

[22] Y. Xian, X. Wang, X. Wang, Q. Li, and X. Yan, “Spiral-transform-
based fractal sorting matrix for chaotic image encryption,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 8, pp. 3320–3327,
Aug. 2022.

[23] P. Liu, X. Wang, and Y. Su, “Image encryption via complementary
embedding algorithm and new spatiotemporal chaotic system,” IEEE
Trans. Circuits Syst. Video Technol., vol. 33, no. 5, pp. 2506–2519, May
2023.

[24] C. Juvekar, V. Vaikuntanathan, and A. P. Chandrakasan, “GAZELLE: A
low latency framework for secure neural network inference,” in Proc.
USENIX Secur. Symp., Jan. 2018, pp. 1651–1669.

[25] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “RepVGG:
Making VGG-style ConvNets great again,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 13728–13737.

[26] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60,
no. 6, pp. 84–90, May 2017.

[28] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,”
Designs, Codes Cryptography, vol. 71, no. 1, pp. 57–81, Apr. 2014.

[29] N. Yan et al., “Efficient and straggler-resistant homomorphic encryption
for heterogeneous federated learning,” in Proc. IEEE Conf. Comput.
Commun. (IEEE INFOCOM), May 2024, pp. 791–800.

[30] B. Jayaraman and D. Evans, “Evaluating differentially private machine
learning in practice,” in Proc. USENIX Secur. Symp., Aug. 2019,
pp. 1895–1912.

[31] M. Abadi et al., “Deep learning with differential privacy,” in Proc. CCS,
Oct. 2016, pp. 308–318.

[32] X. Liu, Z. Liu, Q. Li, K. Xu, and M. Xu, “Pencil: Private and extensible
collaborative learning without the non-colluding assumption,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2024.

[33] G. Xu, G. Li, S. Guo, T. Zhang, and H. Li, “Secure decentralized image
classification with multiparty homomorphic encryption,” IEEE Trans.
Circuits Syst. Video Technol., vol. 33, no. 7, pp. 3185–3198, Jul. 2023.

[34] Z. Ghodsi, N. K. Jha, B. Reagen, and S. Garg, “Circa: Stochastic ReLUs
for private deep learning,” in Proc. NeurIPS, Jan. 2021, pp. 2241–2252.

[35] H. Peng et al., “AutoReP: Automatic ReLU replacement for fast private
network inference,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2023, pp. 5155–5165.

[36] D. Demmler, T. Schneider, and M. Zohner, “ABY—A framework for
efficient mixed-protocol secure two-party computation,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2015.

[37] N. Ferguson, B. Schneier, and T. Kohno, Cryptography Engineering:
Design Principles and Practical Applications. Hoboken, NJ, USA:
Wiley, 2010.

[38] M. Bakiri, C. Guyeux, J.-F. Couchot, L. Marangio, and S. Galatolo, “A
hardware and secure pseudorandom generator for constrained devices,”
IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3754–3765, Aug. 2018.

[39] P. Kietzmann, T. C. Schmidt, and M. Wählisch, “A guideline on
pseudorandom number generation (PRNG) in the IoT,” ACM Comput.
Surveys, vol. 54, no. 6, pp. 1–38, Jul. 2022.

[40] S. Tezuka and P. L’Ecuyer, “Efficient and portable combined Tausworthe
random number generators,” ACM Trans. Model. Comput. Simul., vol. 1,
no. 2, pp. 99–112, Apr. 1991.

[41] (2020). SEAL. [Online]. Available: https://github.com/microsoft/SEAL

Xuanang Yang received the B.E. degree in software
engineering from Wuhan University, Hebei, China,
in 2019, where he is currently pursuing the Ph.D.
degree with the School of Cyber Science and Engi-
neering. His research outcomes have appeared in
IEEE TRANSACTIONS ON INFORMATION FOREN-
SICS AND SECURITY. His research interests include
privacy-preserving machine learning and distributed
machine learning.

Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

10598 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 10, OCTOBER 2025

Jing Chen (Senior Member, IEEE) received
the Ph.D. degree in computer science from the
Huazhong University of Science and Technology,
Wuhan. He has been a Full Professor with Wuhan
University since 2015. He has published more than
150 research papers in many international journals
and conferences, such as IEEE TRANSACTIONS
ON DEPENDABLE AND SECURE COMPUTING,
IEEE TRANSACTIONS ON INFORMATION FOREN-
SICS AND SECURITY, IEEE TRANSACTIONS ON
MOBILE COMPUTING, IEEE TRANSACTIONS ON

COMPUTERS, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, USENIX Security, CCS, and INFOCOM. His current research
interests include computer science, network security, and cloud security.
He acts as a reviewer for many journals and conferences, such as IEEE
TRANSACTIONS ON INFORMATION FORENSICS, IEEE TRANSACTIONS ON
COMPUTERS, and IEEE/ACM TRANSACTIONS ON NETWORKING.

Yuqing Li (Member, IEEE) received the Ph.D.
degree in electronic engineering from Shanghai Jiao
Tong University, Shanghai, China, in 2019. From
2019 to 2020, she was a Post-Doctoral Fellow with
Hong Kong University of Science and Technol-
ogy, Hong Kong. From 2020 to 2022, she was a
Researcher with the Huawei Hong Kong Research
Center, Hong Kong. She is currently an Associate
Professor with the School of Cyber Science and
Engineering, Wuhan University, Wuhan, China. Her
research interests include data privacy and security,

distributed machine learning, and edge computing.

Kun He (Member, IEEE) received the Ph.D. degree
in computer science from the Computer School,
Wuhan University. He is currently an Associate
Professor with Wuhan University. He has published
more than 30 research papers in many international
journals and conferences, such as IEEE TRANSAC-
TIONS ON INFORMATION FORENSICS AND SECU-
RITY, IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE COMPUTING, IEEE TRANSACTIONS
ON MOBILE COMPUTING, USENIX Security, CCS,
and INFOCOM. His current research interests

include cryptography, network security, mobile computing, and cloud
computing.

Xiaojie Huang received the B.E. degree in infor-
mation security from Wuhan University, Wuhan,
China, in 2023, where he is currently pursuing the
M.S. degree with the School of Cyber Science and
Engineering. His research interests include privacy-
preserving machine learning and secure multi-party
computation.

Zikuan Jiang received the B.E. degree in cybersecu-
rity from Wuhan University, Wuhan, China, in 2023,
where he is currently pursuing the Ph.D. degree with
the School of Cyber Science and Engineering. His
current research interests include privacy-preserving
machine learning.

Ruiying Du received the B.S., M.S., and Ph.D.
degrees in computer science from Wuhan Uni-
versity, Wuhan, China, in 1987, 1994, and 2008,
respectively. She is currently a Professor with
Wuhan University. She has published more than
100 research papers in many international journals
and conferences, such as IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY, IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, International Journal of Parallel and
Distributed Systems, USENIX Security, CCS, and

INFOCOM. Her current research interests include network security, wireless
networks, cloud computing, and mobile computing.

Hao Bai received the B.E. degree in information
security from Wuhan University, Wuhan, China, in
2022, where he is currently pursuing the M.S. degree
with the School of Cyber Science and Engineering.
His research interests include distributed machine
learning.

Authorized licensed use limited to: Wuhan University. Downloaded on January 17,2026 at 05:16:19 UTC from IEEE Xplore. Restrictions apply.

