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Abstract—Cross-silo federated learning (FL) enables multiple
institutions (clients) to collaboratively build a global model without
sharing private data. To prevent privacy leakage during aggre-
gation, homomorphic encryption (HE) is widely used to encrypt
model updates, yet incurs high computation and communication
overheads. To reduce these overheads, packed HE (PHE) has been
proposed to encrypt multiple plaintexts into a single ciphertext.
However, the original design of PHE assumes all clients share
a single private key, making the system vulnerable to security
threats of ciphertexts being intercepted and decrypted by honest-
but-curious clients. Also, it does not consider the heterogeneity
among different clients, resulting in undermined training efficiency
with slow convergence and stragglers. To address these challenges,
we propose FedPHE, a secure and efficient FL framework with
PHE by jointly exploiting contribution-aware secure aggregation
and straggler-resistant client selection. Using CKKS with spar-
sification and obfuscating, FedPHE achieves efficient secure ag-
gregation that allows clients to only provide obscured encrypted
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updates while the server can perform aggregation by accounting
for contributions of local updates. To mitigate the straggler ef-
fect, we devise a perturbed sketch-based selection to cherry-pick
representative clients with heterogeneous models and computing
capabilities in a communication-efficient and privacy-preserving
manner. We show, through rigorous security analysis and exten-
sive experiments, that FedPHE can efficiently safeguard clients’
privacy, achieve 2.45 − 6.56× training speedup, cut the commu-
nication overhead by1.32 − 24.85×, and reduce straggler effects
by 1.89 − 2.78×.

Index Terms—Federated learning (FL), packed homomorphic
encryption (HE), secure aggregation, client heterogeneity, client
selection.

I. INTRODUCTION

CROSS-SILO federated learning (FL) [2], [3] is an emerg-
ing distributed learning paradigm that enables multiple

institutions (e.g., banks, companies), referred to as clients, to
collaboratively train a global model without sharing their private
data [4], [5]. In a typical cross-silo FL system, a central pa-
rameter server (PS) orchestrates many clients to aggregate local
updates (e.g., gradients, model parameters) in multiple rounds
of synchronization. Although this system does not reveal the
clients’ raw data in the clear, it has been shown that adversaries
can still infer a client’s private information from its updates [6],
[7], [8].

To avoid privacy leakage during aggregation, many privacy-
preserving techniques have been employed for FL [9], [10].
Among them, homomorphic encryption (HE) is particularly
attractive to cross-silo FL, as it provides stronger privacy guar-
antees without compromising the learning accuracy [11], [12],
[13]. With HE, aggregation can be performed directly on ci-
phertexts, without decrypting them first. However, HE incurs
significant computation and communication overheads as it
performs computationally intensive cryptographic operations
(e.g., modular multiplications and polynomial reductions) and
generates ciphertexts that are much larger to transfer than the
input plaintexts [14], [15]. A promising approach to address this
problem is packed HE (PHE), which packs and encrypts multiple
plaintext values into a single ciphertext [16]. By facilitating
parallel encryption/decryption operations on multiple plaintexts,
PHE dramatically reduces the encryption and communication
overheads.

Though effective, existing PHE solutions [1], [17] commonly
adopt single-key HE like Paillier and CKKS, with the assumption
that all clients share the same encryption and decryption keys.
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Typically, each client encrypts local updates using the shared
encryption key before submitting them to PS, ensuring that
neither the PS nor external adversaries can learn any information.
Nevertheless, since all clients apply the same decryption key, an
honest-but-curious client has the ability to intercept and decrypt
the data from others. Hence, PHE can be secure when all clients
fully trust each other, yet it is hard to guarantee in practice,
particularly in cross-silo FL scenarios. Without addressing these
security challenges, the potential of PHE cannot be fully un-
leashed.

Also, the original design of PHE largely ignores client hetero-
geneity [18], [19], an intrinsic problem of cross-silo FL, making
them hard to deploy in practice. On one hand, data are distributed
in an unbalanced fashion across clients (i.e., statistical hetero-
geneity), which often leads to discrepancies in local models and
adversely impacts convergence behavior. This way, additional
encrypted communications will be implemented, undermining
the training efficiency of FL. On the other hand, clients may have
varying computing capacities and communication bandwidth
(i.e., system heterogeneity). This results in a prominent straggler
problem, which can be further exacerbated by computationally
intensive encryption/decryption operations, significantly slow-
ing down the training progress. A large body of works have been
proposed to address the heterogeneity issues [20], [21]. One
common approach is weighted aggregation [22]. As datasets
held by clients may have different contributions to model per-
formance, vanilla aggregation often causes serious bias to the
global model that hinders convergence. It is thus desirable to
differentiate between the contributions of local updates during
aggregation. Another popular approach is to judiciously select
a subset of clients to participate into training, as not all clients
are equally important [18], [23]. By identifying fast clients with
quality data and involving them in the training process, the strag-
gler issue can be effectively addressed without compromising
model accuracy. Although many efforts have been devoted to
weighted aggregation and client selection, they were largely
explored separately and designed for plaintext data without any
encryption protection. In general, weighted aggregation is per-
formed based on client selection to collect clients’ contributions,
meanwhile, the aggregated global model also affects local model
training and, in turn, determines the client selection. It is hence
imperative to handle these problems to achieve efficient PHE for
heterogeneous FL.

To build a secure and efficient cross-silo FL system, we have
to cope with three major challenges. First, existing privacy-
preserving weighted aggregation studies primarily rely on
single-key HE [24], where all clients share the same encryption
key, making the system vulnerable to eavesdropping or collusion
attacks by malicious clients. Although multi-key HE [25], [26]
has been proposed to address this issue by allowing clients to
encrypt their local updates with different encryption keys, it
incurs excessive computation overheads, especially when de-
ploying large-scale FL. Consequently, training efficiency will be
severely impeded by cryptographic computations, underscoring
the necessity for achieving secure and lightweight aggregation
for FL. Second, existing HE solutions [17] often rely on ho-
momorphic addition for secure weighted aggregation, where

clients directly weigh their local updates based on data size
and encrypt the weighted updates for aggregation. However,
this approach becomes infeasible under client heterogeneity, as
a client’s data quantity does not necessarily reflect its overall
contribution to the global model. Additionally, since the aggre-
gation weights are calculated by clients themselves, there is a
risk that a client could misreport its weight to skew the global
model towards its local training. As such, it is desired to employ
homomorphic multiplication on ciphertext for weighted aggre-
gation on the PS side. This introduces potential communication
bottlenecks as homomorphic multiplication typically requires a
large ciphertext space for encryption [27]. Third, existing client
selection approaches [18] are mainly carried out in plaintext
and require direct access to local model updates, raising privacy
concerns in FL. Accurately measuring clients’ contributions
to the global model is challenging due to client heterogeneity,
which is further exacerbated by privacy protection requirements.
Even if achieved, the selection efficiency will be significantly
compromised as data encryption demands many extra operations
(e.g., communications and computations), which can be overly
expensive. Thus, we have to carefully navigate the tradeoff
between security and efficiency in client selection.

In this paper, we propose FedPHE, a secure and efficient
PHE-based FL framework to tackle challenges associated with
security threats and client heterogeneity. FedPHE develops a
contribution-aware secure aggregation scheme using the packed
CKKS techniques, which supports homomorphic multiplica-
tion. In a nutshell, the PS aggregates the encrypted local updates
from the selected clients with encrypted weights accounting for
their contributions to the global model, facilitating the model
to quickly incorporate new knowledge and thus accelerating
training convergence. Given that vanilla CKKS often generates
substantially enlarged ciphertexts, we use a pack-based spar-
sification approach to optimize data transfer efficiency during
periodical encrypted FL synchronizations. To enhance privacy
against honest-but-curious adversaries, we employ a secret
sharing-based obfuscating technique to obscure the individual
updates with the random factor, later to be recovered and re-
moved to obtain the correct aggregated result. This way, the
encrypted local updates are transmitted and aggregated in the ob-
fuscated form. To mitigate the straggler effect, FedPHE devises a
sketch-based client selection scheme to judiciously select clients
that host diverse models with fast training capability. The key
insight is that different clients might send similar or redundant
model updates to the PS, incurring unnecessary communication
costs. We propose to measure the similarity of local updates
using the sketching technique which maps high-dimensional
model updates to a lower dimension through entry hashing.
To further avoid potential privacy leakage from such sketching,
clients perturb the computed sketches of their model updates
before sending to PS. The PS then removes these perturbations
in the received sketches, clusters clients with similar sketches
together and only selects the fastest client from each cluster. This
ensures that clients are selected in a communication-efficient
and privacy-preserving manner. We provide rigorous security
analysis for FedPHE and also validate its efficiency through
empirical studies.
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We summarize our main contributions as follows:
� We propose FedPHE, a secure and efficient cross-silo FL

framework with PHE. To our knowledge, this is the first
attempt that enables both contribution-aware secure ag-
gregation and sketch-based straggler-resistant client selec-
tion to effectively address the security threats and hetero-
geneity challenges, thus closing the gap between privacy-
preserving FL and its practical implementation.

� Building upon CKKS’s homomorphic encryption, FedPHE
achieves efficient encrypted weighted aggregation that ac-
counts for contributions of local updates to the global
model. To enhance both efficiency and security of data
transfer, the pack-level sparsification, and secret sharing-
based obfuscating schemes are jointly implemented, ad-
dressing the issues of increased ciphertext size using
vanilla CKKS and ciphertext being decrypted by honest-
but-curious clients.

� FedPHE leverages perturbed sketches of local updates to
facilitate a communication-efficient client selection in a
privacy-preserving manner. By jointly considering data
distributions and resource availability, FedPHE clusters
similar clients together and then cherry-picks the fastest
client from each cluster, effectively mitigating the straggler
problem without compromising model accuracy.

� Rigorous security analysis demonstrates that FedPHE is
secure against honest-but-curious adversaries. Extensive
experiments on real-world datasets show that compared
to the state-of-the-art approaches, FedPHE accelerates the
training speed by 2.45-6.56×, cuts the communication
overhead by 1.32-24.85×, and mitigates the straggler effect
by 1.89-2.78×, with a slight degradation of model accuracy
(1.45% only).

II. PRELIMINARIES AND MOTIVATION

We start by introducing the basics of cross-silo FL and the
HE technique. We then motivate the design of FedPHE.

A. Cross-Silo Federated Learning

Consider a cross-silo FL system consisting of a central PS
and a set of N clients N = {1, . . . , N} that collaboratively
train a machine learning model without sharing their raw data.
Each client i holds a local dataset Di containing Di = |Di|
data samples. Let fi(w, ξi) be the loss value computed from
the training sample ξi ∈ Di with parameters w. The local loss
function of client i is computed as

fi(w) � 1

Di

∑
ξi∈Di

fi(w, ξi). (1)

The goal of clients is to jointly solve the following optimization
problem, under the coordination of the PS:

min
w
L(w) � min

w

∑
i∈N

pifi(w), (2)

where L(w) is the global loss function, and pi is client i’s
aggregation weight, where pi ≥ 0 and

∑
i∈N pi = 1. To solve

(2), clients perform a synchronous update (gi = ∇fi(w)) that
proceeds in rounds of communication.

A key requirement for cross-silo FL is to provide a strong pri-
vacy guarantee, as there is increasing evidence that adversaries
can extract private information from client updates even when
training data are kept locally [6], [8].

B. Homomorphic Encryption

HE is a powerful cryptographic primitive that enables com-
putations to be performed directly on the encrypted data without
decrypting them in advance [28], [29]. HE ensures that the
calculations performed on ciphertexts, when decrypted, give
identical results of that obtained by directly operating on the
plaintexts. More formally, an encryption scheme E(·) is said to
be an additive HE scheme if E(m1)⊕E(m2) = E(m1 +m2)
for any plaintext messages m1 and m2, where ⊕ is an addition
operation. Similarly, a scheme is a multiplicative HE scheme if
E(m1)�E(m2) = E(m1 ·m2), where � is a multiplication
operation. Popular HE schemes include Paillier [30], BFV [31],
and CKKS [32], where Paillier only allows the addition opera-
tion to be performed on ciphertexts, whereas BFV and CKKS
support both additions and multiplications.

While HE allows the computation to be securely delegated to
an untrusted third party, it suffers from critical inefficiency asso-
ciated with encryption operations and ciphertext transmissions.
Many efforts have been devoted to improving HE efficiency [14],
[15], [33]. Among them, a promising approach is PHE which
packs and encrypts multiple plaintext values into a single cipher-
text, allowing for parallel encryption/decryption operations [17].
However, current (packed) homomorphically encrypted FL so-
lutions either often assume all clients use a single encryption key,
or largely ignore the intrinsic client heterogeneity in a cross-silo
FL, substantially limiting their practical applications.

C. Motivation

The need for weighted aggregation on ciphertexts: In real-
world FL systems, the training datasets owned by clients often
have different contributions to the global updates, a phenomenon
known as the statistical heterogeneity. In this case, simply
performing unweighted aggregation, i.e., gt+1 =

∑
i∈N

1
N gt

i

where pi =
1
N , results in an undesirable bias to the global

updates that hinder the training convergence. A more appropriate
approach is to perform weighted aggregation, in which clients
are assigned different weights for aggregation based on their
contributions (e.g., data size or quality). Taking FedAvg [34]
as an example, the weighted aggregation based on data size is
performed to minimize the loss in (2), i.e.,

gt+1 =
∑
i∈N

pig
t
i =

∑
i∈N

Di∑
i∈N Di

gt
i, (3)

where gt
i and gt are the local and global updates. To illustrate

the significance of weighted aggregation, we refer to Fig. 1.
Compared to the unweighted approach, weighted aggregation
(weight set based on the data size) results in much-improved
accuracy loss and faster convergence. However, existing HE
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Fig. 1. Comparisons of weighted and unweighted aggregation.

TABLE I
COMPARISONS OF DIFFERENT (PACKED) HE SCHEMES

solutions [17] employ either unweighted aggregation or homo-
morphic addition-based aggregation, making them infeasible to
support general weighted aggregation. It is hence desired to
employ homomorphic multiplication on ciphertext for secure
weighted aggregation.

The need for efficient secure aggregation: HE-based FL meth-
ods offer strong privacy guarantees, albeit at the expense of
efficiency. Table I shows the comparison results of Paillier, BFV,
and CKKS as well as their packed implementation with plaintext
size 109.89 KB. Specifically, Paillier generates a ciphertext close
to 205× larger than the plaintext, while consuming considerable
computation time. BFV and CKKS produce larger ciphertexts
than Paillier and even lead to memory overflow. Though the PHE
technique can address these issues, the yielded communication
overheads remain too high, resulting in an inflation of 2.4×
for Paillier, 211.3× for BFV, and 42.3× for CKKS. Moreover,
existing PHE solutions commonly adopt single-key HE like
Paillier and CKKS, where all clients are assumed to share a
single private key, making the system vulnerable to security
threats of ciphertexts being intercepted and decrypted by honest-
but-curious clients. Thus, it is imperative to jointly address these
two issues for achieving efficient secure aggregation for FL.

The need for straggler resistance: In synchronous cross-silo
FL systems, client heterogeneity inevitably results in strag-
glers, i.e., slow clients. This problem is further exacerbated
with computationally intensive HE operations. Waiting for these
stragglers significantly prolongs FL training. Although it seems
feasible to set a staleness bound by directly ignoring stragglers,
deriving the optimal bound is challenging. Table II illustrates
the straggler effect, which extends the training time by 91.0%
and the encryption/decryption time by 93.6%. Moreover, normal
clients, except for stragglers, experience an extra 36.2% wait-
ing time. Therefore, stragglers cause high latency and hinder

TABLE II
BREAKDOWN OF TRAINING ITERATION TIME FOR NORMAL CLIENTS AND

STRAGGLERS

Fig. 2. Comparisons of FullSelection and RandomSelection.

synchronization efficiency, necessitating the straggler-resistant
solutions for FL.

The need for client selection. One possible remedy for strag-
glers is to select a subset of clients to participate in FL. As shown
in Fig. 2, a simple approach that randomly chooses 80% of clients
can significantly decrease the delay without sacrificing model
accuracy. Although random selection expedites convergence
by reducing the selection probability of stragglers, it fails to
tackle the straggler issue at its core. Moreover, existing client
selection methods are carried out in plaintext, which is suscep-
tible to privacy leakage [35]. Hence, how to achieve efficient
and privacy-preserving client selection remains challenging for
mitigating the straggler effect.

III. DESIGN OF FEDPHE

In this section, we describe FedPHE, a secure and efficient
PHE-based FL framework designed to address challenges asso-
ciated with security threats and client heterogeneity. We begin
with a system overview and then elaborate on how FedPHE
co-designs contribution-aware secure aggregation and sketch-
based straggler-resistant client selection, followed by its security
analysis.

A. Overview

Our proposed system consists of three types of entities: a key
distribution center (KDC), a central PS and a set ofN clients. The
KDC is widely adopted in current research for key distribution
and management [24], [36], [37]. Its primary role is to generate
and dispatch keys, vectors, and local obfuscating factors to
clients and the PS via secure channels. These operations are
computationally lightweight and can be pre-computed, making
them well-suited for the KDC infrastructure. During collabo-
rative model training, data exchanges are carried out between
clients and PS through insecure channels.
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Fig. 3. A snapshot of FedPHE architecture.

Threat model: In our system, the KDC is regarded as fully
trusted. The PS and clients are assumed to be honest-but-curious,
which is commonly adopted in existing privacy-preserving FL
works [26], [38]. That is, they will honestly follow the protocol
design, yet are curious about the private data of each client.
In our threat model settings, honest-but-curious clients may try
to eavesdrop and decrypt encrypted local updates or collude
to obtain a certain client’s private data, but they do not launch
poisoning attacks. We consider a more practical threat model
with insecure communication channels. While TLS/SSL proto-
cols establish secure channels, they remain vulnerable to internal
adversaries, compromised participants, or potential key leakage.

Design goals: Our design goal is to develop a secure and
efficient FL framework with PHE. Specifically, the following
desirable objectives should be achieved.
� Privacy: It should protect the privacy of local datasets

against honest-but-curious PS and clients. Specifically, the
PS cannot access the private training data of any particular
client, while clients cannot infer any private information
about other clients’ datasets, even when eavesdropping
attacks are launched.

� Efficiency: It is expected to be efficient for encrypting local
updates and transferring ciphertexts since high computa-
tion and communication overheads make PHE-based FL
difficult to implement in practice. Furthermore, it should
effectively mitigate the negative impact of stragglers un-
der client heterogeneity, accelerating the training process
without sacrificing model accuracy.

Architecture: We propose FedPHE to attain the above two
objectives by jointly designing contribution-aware secure ag-
gregation and sketch-based straggler-resistant client selection.
Fig. 3 shows the main architecture, where FedPHE proceeds in
rounds of communication as described below.

1© Key Distribution: KDC generates and dispatches keys and
vectors to clients in secure channels every τ rounds.

2© Local Training: At the beginning of each round t, every
client i ∈ N runs E steps of local stochastic gradient
descent in (2) to compute local update gt

i;
3© Sketching Local Updates with Perturbation: Using vec-

tors Vc,Vs,i received from KDC, client i ∈ N computes
and sends the perturbed sketch h̃t

i of local update gt
i to

PS;

4© Client Selection via Clustering Sketches: The PS recovers
the original sketches by removing personalized perturba-
tions and clusters them to select a subset of clients St
as participants, where the aggregation weight pti for each
selected client is derived based on its contribution;

5© Packed Encryption with Sparsification and Obfuscating:
KDC computes and dispatches local obfuscating factors
{Δi}i∈St to selected clients. Each selected client i ∈ St
performs sparsification by packing local updates gt

i into
{P1

i , . . . ,PK
i }, and obfuscates the sparsely packed local

updates with Δi; After that, it encrypts the obfuscated
packed local updates and sends the ciphertext Cti along
with mask M t

i to PS for aggregation; Finally, it collabo-
rates with other selected clients to retrieve obfuscating
factor R and sends it to unselected clients within the
cluster.

6© Encrypted Weighted Aggregation: The PS aggregates the
received encrypted local updates along with encrypted
weights, and then computes and dispatches the encrypted
global updates Ct and mask M t to all clients;

7© Decryption and Model Update: Every client decrypts,
deobfuscates and unpacks the encrypted global updates,
and then performs the local model updates.

The details of FedPHE are shown in Algorithm 1. KDC
first distributes the updated keys and perturbation vectors to
clients every τ rounds (lines 3–6). During each global round
t, clients execute local training and send perturbed sketches of
local updates to PS (lines 18–22). The PS then selects a subset of
clients St as participants by clustering sketches (lines 11–12).
Given local obfuscating factors received from KDC, the selected
clients perform PHE with sparsification and obfuscating, and
transmit obfuscated encrypted model updates and masks to PS
(line 25). Taking into account clients’ contributions, PS conducts
secure aggregation and sends the results to all clients (lines
13–14). Finally, clients decrypt encrypted global updates and
update their local models (lines 29–31). Notice that the update
frequency τ is critical for balancing security and efficiency.
A lower τ triggers more frequent key and vector updates by
the KDC, narrowing the window for adversaries to exploit but
increasing communication and computation overhead, while a
higher τ cuts these overheads yet may compromise security.

B. Contribution-Aware Efficient Secure Aggregation

Building upon PHE with sparsification and obfuscating, Fed-
PHE conducts an efficient secure aggregation on the ciphertexts
received from selected clients as illustrated in Algorithm 2.
In particular, the aggregation weights are adjusted based on
the contributions of local updates to global updates so as to
accommodate client heterogeneity.

CKKS-based PHE: To improve the efficiency of general HE
schemes, PHE [16] is proposed by packing and encrypting
multiple plaintext values {g1, g2, . . . , gB} into a single cipher-
text, where B is the packing size. By facilitating parallel en-
cryption/decryption operations on multiple plaintexts, PHE can
greatly reduce computation and communication overheads. In
this work, we choose CKKS as the basis of PHE, providing
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Algorithm 1: FedPHE.

several advantages over Paillier and BFV. On one hand, CKKS
allows direct encryption of real numbers on vectors, while Pail-
lier and BFV are limited to encrypting integer plaintexts, which
requires quantizing floating-point numbers and introduces the
risk of overflow or loss of precision. In contrast, CKKS im-
proves the efficiency of encryption and decryption operations by
packing multiple vector elements into a single polynomial di-
rectly, thus enhancing the overall effectiveness of cryptographic
procedures. Fig. 4 illustrates this packing process concisely. On
the other hand, CKKS supports homomorphic multiplication,
making it suitable for achieving secure weighted aggregation
under heterogeneous cross-silo FL. On the contrary, Paillier
only enables homomorphic addition, and BFV may encounter

Fig. 4. Illustration of CKKS packing mode.

Fig. 5. Top-k sparsification. (a) shows the conventional packing method for
HE, which is incompatible with sparsification when applied to ciphertexts; (b)
presents an alternative approach to resolving this issue by packing prior to
sparsification.

overflow issues when multiplying the quantized integers after
encryption. Hence, CKKS is deemed more viable to directly
multiply the encrypted parameters with encrypted weights on
the PS side during aggregation. This way, it is equivalent to
performing weighted aggregation first, followed by encryption
of the aggregated result.

Despite the potential advantages, CKKS-based PHE still in-
curs high communication overheads and also suffers from the
risk of ciphertexts being decrypted by honest-but-curious clients.
To further enhance its efficiency and security, the pack-level
sparsification and secret sharing-based obfuscating schemes are
jointly implemented.

Pack-level sparsification: Sparsification is a promising ap-
proach for reducing the communication traffic in FL train-
ing [39]. In top-k sparsification, each client can sparsify its
model updates by only selecting the top-k model updates to send
to the PS. However, sparsification is mainly implemented at the
scalar level, and becomes infeasible once the data is packed and
encrypted. The reason is that if sparsification is conducted before
encryption, the PS cannot perform alignment on ciphertexts due
to inconsistent coordinate masks [33], Fig. 5 provides a clear
visualization of this process. An alternative method is packing
first and then sparsifying the packs. In this case, the PS can align
the ciphertexts based on the packs’ masks, i.e., the sparsification
granularity is at the packing level.

Each selected client starts by flattening and packing the local
model, and then determines the mask given the sparsification
ratio ζ. The mask will be set to 1 for those packs with the
top ζ ratio largest L2-norm values, and the masked packs are
obfuscated and encrypted accordingly. The ciphertext Cti along
with the corresponding mask M t

i are sent to the PS. Notice that
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such sparsification techniques for CKKS can be further applied
to enhance the efficiency of Paillier and BFV in heterogeneous
scenarios, where clients’ model updates are weighted locally.

Secret sharing-based obfuscating: While HE allows com-
puting on encrypted data, it still suffers from security threats
of ciphertexts being intercepted and decrypted by honest-but-
curious clients. To address these security issues, we propose a
Shamir secret sharing-based obfuscating mechanism that splits
a secret obfuscating number into multiple shares and distributes
these shares to clients, thereby securely obfuscating the sparsely
packed local updates before sending to PS. When enough clients
with obfuscating shares work together, the secret can be correctly
reconstructed.

To realize this, a Shamir (th, |St|) threshold secret sharing
protocol is employed using polynomial interpolation. Specifi-
cally, each selected client i receives a obfuscating number ri
(secret) and constructs a polynomial F i(x) of degree th− 1
whose constant term is ri (i.e.F i(0) = ri) and whose remaining
coefficients are randomly chosen from the finite field p, denoted
as a1, a2, . . . , ath. That is,

F i(x) = ri + a1x+ a2x
2 + · · ·+ athx

th−1 (mod p) , (4)

where th < |St| is called the threshold. Then the client splits
ri into |St| shares {ri,j}j∈St according to F i(x), and ex-
changes them with others. Upon decrypting global updates,
each client performs an deobfuscating operation to compute

r̃i =
∑|St|

j=1 rj,i, and then collaboratively recovering
∑

i∈St ri
as r through Lagrange interpolation, i.e.,

r =
∑
i∈St

ri =

th∑
i=1

r̃i ·
th∏

j=1,j �=i

x− xj

xj − xi
(mod p) . (5)

This allows clients to construct the original polynomial and
cumulative obfuscating values r provided at least th shares
are known, all without disclosing their individual obfuscating
numbers to each other.

To mitigate the risk of privacy leakage when exchanging
secret shares among clients, KDC further generates a unique
obfuscating number rd and employs a lightweight additive
secret sharing protocol to securely dispatch local obfuscating
factors {Δi}i∈St to clients. When preparing to obfuscate data,
client i combines its unique obfuscating factor Δi provided
by KDC. After decrypting the global updates, it subtracts the
global obfuscating factor R = r + rd to deobfuscate the result.
This dual-layer obfuscating scheme provides a strong safeguard
against unauthorized data access and enhances the privacy of the
distributed secret sharing system.

Contribution-aware weighted aggregation: To accommodate
client heterogeneity, the PS aggregates encrypted local updates
from selected clients with encrypted weights accounting for their
contributions to the global model. Here the contribution of client
i is quantified based on the similarity of its sketches in the last
round and current round, {ht−1

i , ht
i}. Locality-Sensitive Hashing

(LSH) [40] has been widely employed in many applications to
approximate Jaccard Similarity, i.e.,

PrH(ht−1
i = ht

i) = JS(gt−1i , gti). (6)

Algorithm 2: Efficient Secure Aggregation.

The PS calculates the probability of sketch collision to esti-
mate the Jaccard similarity of two local updates denoted by
JS(gt−1i , gti), i.e., PrH(ht−1

i = ht
i) = JS(gt−1i , gti). According

to [41], lower similarity implying higher inference loss is likely
to achieve better performance and thus should be assigned a
larger aggregation weight pti. That is,

pti =
exp(−β · JS(gt−1i , gti))∑

j∈St exp(−β · JS(gt−1j , gtj))
, (7)

where β is a positive number used to modify the exponential
function’s curve.

After receiving ciphertexts {Ct1, . . . , Ct|St|} and masks
{M t

1, . . . ,M
t
|St|} from selected clients St, the PS performs

encrypted weighted aggregation to get global updates, i.e.,

E(gt+1) =
∑
i∈St

E
(
pti
)×E

(
gt
i +Δi

)
=
∑
i∈St

E
(
pti
)×E

(
gt
i + (ri + rd,i)/p

t
i

)
(8)

which E(pti) is the encrypted weight assigned to client i. Build-
ing upon CKKS’s homomorphic multiplication, the aggregation
in (8) is equivalent to performing weighted aggregation on
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Algorithm 3: Sketch-Based Client Selection.
Input: Clients N , round t, cluster threshold γ, seed s,

dimension k, random vectors Vc,Vs,i
Output: Selected clients St
// PS
1: Receive perturbed sketches {h̃t

i}i∈N from clients;
2: ht

i ← h̃t
i − Vs,i, ∀i ∈ N ;

3: C← min(G({ht
1, . . . ,h

t
N}), γN );

4: Cluster {ht
i}i∈N into classes At := {At

1 · · · At
C};

5: St ← Select clients from At by Eq. (12);
6: Send St to all clients;
7: Send weights {pti}i∈St to KDC based on Eq. (7);

// Client i ∈ N
8: gt

i ← Flatten local updates gt
i;

9: M← Generate mapping matrix G(s, k);
10: ht

i ← SketchingH(gt
i,M);

11: h̃t
i ← ht

i + Vc + Vs,i;
12: Send perturbed sketch h̃t

i to the PS;

plaintexts and encrypting the result, i.e.,

E(gt+1) = E

(∑
i∈St

pti × gt
i +

∑
i∈St

ri +
∑
i∈St

rd,i

)

= E
(∑

i∈St p
t
i × gt

i + r + rd

)
= E

(∑
i∈St p

t
i × gt

i +R
)

(9)

where R = r + rd is referred to as global obfuscating factor.
The encrypted global updatesCt =

∑
i∈St E(pti) · Cti and mask

M t =
∑

i∈St p
t
i ·M t

i are subsequently dispatched to all clients
for decryption and model update. We summarize how Fed-
PHE conducts contribution-aware efficient secure aggregation in
Algorithm 2.

C. Sketch-Based Straggler-Resistant Client Selection

We employ client selection to address the straggler issue aris-
ing from client heterogeneity. In practice, different clients might
have similar or redundant model updates, causing unnecessary
communication costs. Existing client selection approaches are
largely conducted on plaintext, which contradicts the principles
of privacy-preserving FL. To this end, we leverage the similarity
of local updates to facilitate a sketch-based client selection in a
privacy-preserving manner. Specifically, in each round, clients
compute and send perturbed sketches of their model updates
to the PS. After removing the personalized perturbations from
sketches, the PS clusters similar sketches together and selects the
fastest client from each cluster. The main steps are summarized
in Algorithm 3.

Sketching local updates with perturbation: After decryption
and model updates, each client i first flattens the local model
updates gti to a d element tensor gti and then generates a k × d
matrix calledM, which is made up of k d-dimensional vectors,
using the shared seed s. By leveraging the LSH technique, the
client achieves dimensionality reduction on gti and obtains a

sketch ht
i. In particular, LSH is a family F of functions H:

R
d → S, with the property that if two inputs are similar in the

original data space, they will also have a high similarity after
being converted by the hash [42], [43]. For any two clients’
model updates, gm and gn, any hash functionh chosen uniformly
at random from F should satisfy
� If d(gm, gn) < R, then PrH(h(gm) = h(gn)) ≥ p1;
� If d(gm, gn) ≥ cR, then PrH(h(gm) = h(gn)) ≤ p2.
Here, c is an approximation ratio for the nearest neighbor

search, R is the distance from the nearest neighbor, and p1,
p2 denote the probabilities such that p1 > p2. This definition
ensures that if gm and gn are close, they are hashed to the same
bucket (collision) with a high probability (≥ p1), whereas they
are hashed to the same bucket with a low probability (≤ p2).
We exploit the properties of LSH functions to signify higher
similarity during collisions when two inputs’ hash codes are
highly similar.

Accordingly, the flattened local update gti are quantized into
a binary matrixM{0,1}, where each element is assigned a value
of 1 if it exceeds a threshold ε, and 0 otherwise. To compute
the m-th element of sketch ht

i, we iterate through each element
in m-th row of Mk×d and use each element’s value as an
index in M{0,1} to locate the first occurrence of 1.If a 1 is
found, the corresponding value is recorded in ht

i. Despite the
limited information involved in sketches, there is a risk of privacy
leakage when sketches are transferred to the PS or intercepted
by honest-but-curious clients. To prevent the PS from deducing
sketches, each client adds a shared vector Vc to its sketch ht

i,

yielding a perturbed sketch h
t
i. The addition of Vc is carefully

calibrated to be minimal, ensuring that it does not interfere with
the accuracy of operations such as Jaccard Similarity or cluster-
ing. Moreover, the security of ht

i is maintained since the PS is
not privy to Vc. To further shield against potential interception
of sketches, a personalized vector Vs,i, exclusively known to the
PS and client i, is also added into the sketch before transmission.
The addition of perturbation terms is conducted within the finite
cyclic additive group Zd. Consequently, even if the perturbed
sketch h

t
i + Vs,i is intercepted by honest-but-curious clients,

they won’t be able to learn any meaningful information in the
absence of Vs,i. An illustrative example of this secure perturbed
sketching process is depicted in Fig. 6 and in practice d
 k.

Clustering sketches: After receiving the sketches of local
updates from clients, the PS removes personalized perturba-
tions {Vs,i}i∈St and computes the number of clusters C =

min(G({ht
1, . . . , h

t
N}), γN), whereG(·) denotes the gap statis-

tic, a standard technique to determine the optimal cluster num-
ber [44]. Gap statistic compares the actual intra-cluster variation
to the expected values based on a null reference distribution,
which is generated using Monte Carlo simulations. Here, γ is
the threshold that limits the maximum number of clusters. For
any given k = 1, . . . , kmax, the gap statistic is defined as

Gn(k) = E
∗
n(log Wk)− log Wk, (10)

where Wk denotes the dispersion within the cluster, by com-
paring to its expectation E

∗
n under a sample size n from

the reference distribution. To correct the error in Monte
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Fig. 6. A toy example of perturbed sketching with ε = 0.1.

Carlo sampling, the correction factor sk can be calcu-
lated from B copies of the reference datasets. Let w =
1
B

∑B
b=1 log (Wkb∗). The standard deviation denoted by sd(k)

can be derived, i.e., sd(k) =
√

1
B

∑B
b=1(log Wkb∗ − w)2. De-

fine sk = sd(k)×√(1 +B)/B. We finally choose the smallest
k as the number of clusters such that

Gk ≥ Gk+1 − sk+1. (11)

Following that, clients can be clustered into C classes
{At

1 · · · At
C} by K-means, where those clients in the same class

share similar sketches. Based on the assumption that LSH hashes
similar input items into the same buckets with a high likelihood,
similar sketches mean similar local updates.

Selecting clients: Instead of randomly selecting a client from
a cluster, the PS prioritizes selecting one representative client
having the ability to train quickly. Denote T t

i as the order of
client i’s local update received by the PS in round t. Given
the participation history T 0

i , . . . , T
j−1
i , the priority F

t
i of being

selected can be determined by

F
t
i =

1

αδt−1i + (1− α)× T t
i

, (12)

where α ∈ (0, 1) is the influencing factor, and δt−1i =
1
t

∑t
j=0 T

j
i represents the historical engagement performance

of client i. If the cluster consists of only one client, we directly
add this client to the selection set St.

Compared to traditional similarity determination techniques
like cosine similarity, adopting the perturbed sketches of local
updates as a cluster feature is not only communication-efficient
but also privacy-preserving. This advantage becomes particu-
larly pronounced when applied to more sophisticated machine
learning models.

D. Security Analysis

In this section, we analyze the security of FedPHE. Our analy-
sis is based on the assumption that KDC is completely trustwor-
thy and dispatches keys/obfuscating factors to clients via secure
channels. Generally, there are two main threats to clients’ data.
First, data leakage can occur on honest-but-curious PS during
aggregation and client selection. Second, an honest-but-curious

client may launch eavesdropping or collusion attacks. We next
show that FedPHE is secure against both honest-but-curious PS
and clients.

Theorem 1: Security against the honest-but-curious PS: In
FedPHE, the honest-but-curious PS cannot infer any private
information about clients’ datasets.

Proof: In FedPHE, the PS is responsible for aggregation and
client selection in FedPHE. In the aggregation phase, the PS can
only have access to ciphertexts since the local updates received
from selected clients are encrypted via PHE before transmission.
This prevents the PS from accessing any individual client’s
update during aggregation.

While in client selection phase, the perturbed sketch technique
is employed for communication efficiency and privacy preser-
vation. Specifically, the sketches are dependent on a seed s or
mapping matrixM, both of which are opaque to PS. Without
the seed s, PS can only infer the matrixM through guesswork,
which yet is ineffectual for launching model inversion attacks
or deducing updates since guessing cannot reliably create a
collision with a client’s sketch. Additionally, PS cannot obtain
any client’s random vector Vc, which is transmitted from KDC
via a secure channel. Hence, the low-information nature of
the sketches and the perturbation of shared vectors impede the
reconstruction of local updates, thereby establishing a dual-layer
protection mechanism. Although PS can learn the similarity of
client sketches, it cannot recover any individual client’s specific
sketch or data distribution. Consequently, any reverse engineer-
ing attempts to extract information from sketches are destined
to fail.

Therefore, the honest-but-curious PS cannot infer any partic-
ular client’s dataset information. �

Theorem 2. Security against honest-but-curious clients: In
FedPHE, an honest-but-curious client capable of launching
eavesdropping attacks or colluding with up to |St| − 2 other
clients cannot infer any private information about other clients’
datasets.

Proof. An honest-but-curious client j may attempt to eaves-
drop and decrypt the ciphertexts of any other client i’s up-
dates, denoted as Cti = E(Pi[l] + Δi, pk) = E(Pi[l] + (ri +
rd,i)/p

t
i, pk). However, the adversary cannot have access to

client i’s local updates due to the unawareness of the per-
sonalized obfuscating number ri, obfuscating share rd,i and
aggregation weight pti. In particular, the aggregation weights
pti, i ∈ St are dynamically updated by PS in each round and
remain undisclosed to the clients. As a result, even with ac-
cess to the global model, the adversary cannot infer individual
contributions or local updates. Moreover, even if the adver-
sary can recover the obfuscating number ri by intercepting all
shares ri,k, k ∈ St distributed to selected clients, the critical
obfuscating share rd,i is securely stored in the KDC and is
kept inaccessible. This ensures that clients cannot extract any
other client’s private data through eavesdropping on ciphertexts,
thereby significantly reducing the risk of membership inference
attacks. Similarly, if an honest-but-curious client attempts to
eavesdrop on the sketch h̃t

i = h̃t
i + Vc + Vs,i during the client

selection phase, although the client possesses Vc, he is unaware
of the personalized perturbation vector Vs,i, which is securely
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Fig. 7. Client data distributions under the non-IID setting (α = 1), where color intensity indicates the data volume of each class.

transmitted via the KDC. Thus, the client is unable to obtain any
private information by intercepting others’ sketches.

Furthermore, consider a collusion attack scenario involving
up to |St| − 2 clients and the PS. Without loss of generality,
assume that two selected clients i and j do not collude, while
the remaining |St| − 2 clients collude to try to deduce the
local updates of i and j. During aggregation, these colluding
clients can only obtain the sum of obfuscating numbers, i.e.,
ri + rj = r −∑k∈St\{i,j} rk, and the sum of shares, i.e., rd −∑

k∈St\{i,j} rd,k, pertaining to the two non-colluding clients.
Even if these adversaries further gain access to the secret key
sk and collude with the PS to learn the aggregation weights pti
and ptj , they still cannot determine the individual obfuscating
numbers ri or rj and the corresponding shares rd,i or rd,j .
Without these specifics, the local updates for clients i and j
remain securely protected. Consequently, the collusion attacks
between the PS and up to |St| − 2 clients are ineffective in
FedPHE. Therefore, an honest-but-curious client cannot infer
any private training data of other clients. �

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of FedPHE,
including contribution-aware efficient secure aggregation and
sketch-based straggler-resistant client selection.

A. Evaluation Setup

Platform and parameters. Evaluations are conducted with
3 NVIDIA GeForce RTX 4090 GPUs using Pytorch. Con-
sider a cross-silo FL scenario where N = 10 clients collab-
oratively train a model. We implement BFV and CKKS with
TenSEAL [45], and their poly modulus degrees are set to 8192.
To mimic the presence of stragglers, we randomly select 25%
of clients as stragglers and introduce an artificial delay of 3− 5
rounds’ training time. The batch size is B = 64 and the learning
rate is η = 1e− 3 (1e− 2 for CIFAR-100). The packing size
and the number of LSH hash functions are set to 4096 and 200,
respectively.

Datasets and models: We evaluate the results on four real
datasets: MNIST [46], FMNIST [47], CIFAR-10 and CIFAR-
100 [48]. In particular, we partition MNIST and FMNIST into
60,000 training data and 10,000 test data. For CIFAR-10 and
CIFAR-100, we use 50,000 and 10,000 images as the training
data and test samples, respectively. We study the client hetero-
geneity of the Dirichlet Non-IID data setting (α=1), similar

to [49]. The client data distributions under such non-iid set-
ting are visualized in Fig. 7. We see that datasets are highly
imbalanced with different clients holding unequal amounts of
samples, which closely mirrors real-world data distributions.
A straightforward LeNet-5 neural network architecture [46]
is employed for MNIST. For FMNIST, a CNN model with
2 convolutional layers and 1 fully connected layer is utilized.
The ResNet-20 and ResNet-32 models [50] are applied respec-
tively to conduct experiments on the CIFAR-10 and CIFAR-100
datasets.

Baselines: To validate the proposed FedPHE, we introduce
the following FL algorithms for comparison.
� Plaintext: an ideal upper bound for computation and com-

munication overheads, where parameter transmission and
aggregation are conducted in plaintext.

� BatchCrypt: Paillier-based PHE [17], where clients quan-
tize first, then pack and encrypt the model updates, while
the PS performs aggregation on the ciphertext.

� PackedBFV: BFV-based PHE [31], where model updates
are quantized and weighted on the client side before en-
cryption, as BFV only supports integer operations.

� PackedCKKS: CKKS-based PHE [32], which leverages the
ciphertext multiplication of CKKS to facilitate encrypted
weighted aggregation on the PS side.

� FedAvg: federated averaging [34], where the PS randomly
selects the subset of clients for aggregation.

� FLANP: straggler-resilient FL with adaptive client selec-
tion [51], which starts the training process with faster
clients and gradually involves slower clients once the ac-
curacy of current participants’ data is reached.

B. Evaluations on Efficient Secure Aggregation

We evaluate the efficiency of the proposed FedPHE by ex-
amining the test accuracy, network traffic and training time
under different datasets, compared to the baselines, including
plaintext training (no encryption), BatchCrypt, PackedBFV, and
PackedCKKS. The experiments were conducted until reaching
convergence.

Accuracy: Fig. 8 illustrates the training process of the global
model on different datasets, i.e., MNIST, FMNIST, CIFAR-10
and CIFAR-100. Basically, the accuracy curves of the plaintext
and other baselines almost overlap with each other, signifying
that the PHE technique does not lead to a reduction in accuracy.
While for FedPHE, the accuracy fluctuates within an acceptable
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Fig. 8. Accuracy versus global rounds of FedPHE and the baselines on different datasets.

TABLE III
NETWORK TRAFFIC, TEST ACCURACY, AND TRAINING TIME OF FEDPHE AND THE BASELINES ON DIFFERENT DATASETS

range of 0.26%–1.45%, which arises from pack-level sparsifi-
cation and client selection.

Network traffic and training time: We present the network
traffic and training time of FedPHE and the baselines on different
datasets in Table III. We observe that FedPHE reduces the net-
work footprint for MNIST, FMNIST, CIFAR-10 and CIFAR-100
by up to 11.75×, 17.58×, 2.56×, and 2.06×, respectively, com-
pared to PackedCKKS. Moreover, it outperforms PackedBFV
for 2.66− 24.85× across four datasets. It is worth noting that
the ciphertext size is only 1.13×, 0.76×, 6.16×, and 6.25×
compared to the BatchCrypt. This indicates the efficiency of
FedPHE in reducing the ciphertext generated by CKKS to the
level of BatchCrypt encryption with Paillier. This achievement
is truly remarkable. Additionally, the ciphertext size, which was
previously in a ”memory out” state as shown in Table I, has been
reduced to only1.47− 10.99× larger than the plaintext baseline,
making FedPHE applicable to FL in practice. In conclusion,
FedPHE achieves communication overhead reduction ranging
from 1.32× to 24.85× compared to these baselines.

As shown in Table III, BatchCrypt requires 2.65− 11.21×
more training time compared to plaintext. In contrast, FedPHE
incurs only 1.00− 2.46× training time of the plaintext baseline,
greatly enhancing the efficiency of model training. Furthermore,
leveraging sparsification and client selection, FedPHE achieves
a training acceleration of 2.45− 6.56×. With an apt sparsi-
fication ratio, FedPHE does not adversely affect the trained

TABLE IV
CONVERGENCE ROUNDS, ACCURACY, TRAINING TIME, AND NETWORK

TRAFFIC OF DIFFERENT SPARSIFICATION POLICIES UNDER VARYING LEVELS OF

NON-IIDNESS

model quality. Instead, it achieves significant compression while
maintaining high performance.

Sparsification policies: Table IV presents a comparison of
three commonly used sparsification policies under varying non-
IIDness levels for the MNIST dataset, provided sparsifica-
tion ratio ζ = 70%. Obviously, FedPHE without sparsification
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Fig. 9. Impact of sparsification ratios and non-IIDness levels on test accuracy
across the CIFAR-100 dataset.

achieves the slowest convergence and highest network traffic.
By randomly selecting ζ of packed updates, random sparsifi-
cation reduces convergence time and communication volume
by 1.06− 1.10× and 1.30− 1.35×. This, however, results in
a drastic accuracy drop of 6.65%, since essential data may be
discarded indiscriminately. Average-based sparsification, which
chooses the top-ζ packed updates by mean value, outperforms
random sparsification in terms of reducing convergence time and
network traffic, yet it still fails to precisely select crucial data, re-
sulting in a 2.41% accuracy decline. In contrast, L2 norm-based
sparsification, targeting the top-ζ packed updates by L2 norm
magnitude, cuts down convergence time by 2.33− 2.75× and
network traffic by 2.10− 2.17×, while keeping the accuracy
fluctuation within a modest 1.45%. By considering the cumu-
lative impact of packed updates, especially the smaller ones,
on model performance, this approach offers a more promising
strategy to navigate the trade-off between convergence and
accuracy, compared to solely relying on average values.

Impact of sparsification ratios and non-IIDness levels: Fig. 9
provides a visual analysis of how sparsification ratios and non-
IIDness levels impact the test accuracy. For a given sparsification
ratio ζ, the accuracy tends to increase as the sample distribution
becomes more uniform (i.e., larger α). As expected, under a
specific non-IID setting, an increase in sparsification ratio is
consistently associated with improved accuracy. It is worth
noting that setting ζ too low may lead to a drastic reduction
in model accuracy, particularly when the sample distribution is
highly imbalanced. This highlights the necessity of carefully
calibrating the sparsification ratio to strike a balance between
enhancing communication efficiency and maintaining satisfac-
tory accuracy.

C. Evaluations on Sketch-Based Client Selection

We show FedPHE with client selection alone has superior
performance over two baselines, i.e., FedAvg and FLANP.

Accuracy: Fig. 10 shows that FedPHE consistently outper-
forms the baselines in terms of test accuracy. FLANP exhibits
faster convergence compared to FedAvg since it selects fewer
stragglers to participate. Moreover, FedPHE achieves accel-
erated convergence compared to FedAvg and FLANP. This
is because FedPHE employs sketch-based client selection to

TABLE V
CONVERGENCE ROUNDS, ACCURACY, TRAINING TIME, AND NETWORK

TRAFFIC OF DIFFERENT SELECTION POLICIES UNDER VARYING LEVELS OF

NON-IIDNESS

cherry-pick representative clients hosting diverse models and
having the capability to train quickly.

Selection policies: After clustering similar sketches together,
PS selects a representative client from each cluster. We evaluate
different selection policies under varying non-IIDness levels
for the MNIST dataset, as shown in Table V. Compared to the
baseline (no selection), random selection reduces convergence
time and network traffic by 1.44− 2.15× and 1.44− 1.50×,
respectively. However, randomly choosing clients may still in-
volve some stragglers as participants. Weighted selection, which
prioritizes clients with higher aggregation weights, achieves
superior performance in reducing convergence time and com-
munication overhead. Yet, indiscriminately selecting a client
with the maximum weight may potentially select less responsive
clients due to a lack of awareness of stragglers. In contrast, fastest
selection cherry-picks the fastest client, effectively mitigating
the straggler effect. This accelerates training by 2.06− 2.96×
and reduces network traffic by 1.64− 1.76× compared to the
baseline. Hence, it is effective for FedPHE to select the fastest
client from each cluster to participate in the training.

Number of clusters: From Fig. 11(a), we can see that the
cluster number fluctuates between 1 and 10, where the cluster
threshold is set to γ = 1. A decrease in the cluster number
suggests a higher similarity between local models. This means
that similar sketches of local models are clustered together,
resulting in a reduction in the cluster number. Throughout the
process, the cluster number is dynamically determined based on
the similarity of sketches sent by clients. There is no need for the
PS to specify the exact number of clusters, making the model
more robust.

Client selection efficiency: We record the number of normal
clients and stragglers of FedPHE and the baselines. As depicted
in Fig. 11(b) with γ = 0.625, we observed that the proportions
of selected stragglers are 25%, 17%, 12% for FedAvg, FLANP
and FedPHE, respectively. FedAvg randomly selects a subset
of clients to participate, which reduces the overall number of
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Fig. 10. Accuracy versus clock time of FedPHE and the baselines on different datasets.

Fig. 11. Number of clusters in each round and number of selected clients of
FedPHE and the baselines.

clients. However, many stragglers are still involved in the selec-
tion process. FLANP initially selects normal clients, but strag-
glers will join in the final rounds of training. In contrast, FedPHE
can efficiently ensure the minimal inclusion of stragglers and
decrease the overall number of clients without accuracy loss. It
can reduce the straggler effect by up to 1.89− 2.78× compared
to baselines. Our client selection scheme does not compromise
model accuracy. That is, selecting a subset of representative
clients to participate during aggregation can dramatically miti-
gate the straggler effect caused by client heterogeneity.

D. Ablation Study

We continue to validate FedPHE through the ablation study.
Sparsification ratios: Table VI illustrates the test accuracy,

convergence time and network traffic with varying sparsification
ratios across four different datasets. For MNIST and FMNIST
datasets, employing a sparsification ratio of 10% is desirable as
it reduces the network footprint by 8.48× and 10.39×, respec-
tively, with only negligible impact on model accuracy. While for
CIFAR-10 and CIFAR-100 datasets, a 50% sparsification ratio
leads to unacceptable accuracy losses of 12.62% and 13.06%,
despite achieving high communication efficiency. In contrast, a
more moderate 70% sparsification ratio appears to be feasible,
reducing network traffic by 1.49× and 1.43×, while maintaining
a tolerable accuracy reduction of only 1.45%. These suggest that
more complex datasets typically require a less aggressive spar-
sification approach to preserve satisfactory accuracy. Hence, the
sparsification ratio should be carefully determined by accounting
for dataset characteristics in order to strike a balance between
efficiency and model performance.

TABLE VI
ABLATION RESULTS FOR VARYING SPARSIFICATION RATIOS

TABLE VII
ABLATION RESULTS FOR CLIENT SELECTION

Client selection: Table VII presents the performance com-
parisons with or without client selection across four differ-
ent datasets. Notably, our client selection scheme enables a
1.38− 3.07× faster convergence while incurring a negligible
maximum accuracy decline of only 0.7%. Also, by excluding
stragglers during aggregation, it achieves a remarkable reduction
in network traffic by 1.28− 1.85×. These results corroborate
the effectiveness of our proposed selection scheme in mitigating
the negative effects caused by stragglers, making it a favorable
choice for efficient PHE-based FL training.
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V. RELATED WORK

We briefly survey the related works below.
HE-based FL: HE is a widely used privacy-preserving tech-

nique for FL to avoid privacy leakage during aggregation [10],
[52], yet leads to significant inefficiency in computation and
communication. To address this, Zhang et al. design BatchCrypt
to achieve a substantial decrease in encryption overhead and ci-
phertext volume by packing multiple plaintexts into a long inte-
ger [17]. Jiang et al. propose FLASHE, an additively symmetric
HE in double masking to address the compatibility issues with
sparsification [33]. Nevertheless, these methods rely on Paillier
and fail to support weighted aggregation on ciphertexts. There is
still ample scope for improving communication efficiency. In a
similar vein, Smart et al. design a ciphertext-packing technique
based on polynomial-CRT [15], and Brakerski et al. further
extend SIMD to the standard LWE to achieve nearly optimal
homomorphic evaluation [14]. However, existing HE solutions
either suffer from the risk of ciphertexts being decrypted by
honest-but-curious clients, or largely neglect the intrinsic client
heterogeneity in a cross-silo FL.

HE-based secure aggregation: Traditional HE schemes
mostly assume all clients share a secret key, making the sys-
tem suffering from the risk of ciphertexts being intercepted
and decrypted by honest-but-curious clients. To mitigate these
security issues, various approaches have been proposed. Zheng
et al. present a lightweight encryption and aggregation protocol
that enables clients to submit obfuscated updates [24]. Cai et al.
propose SecFed, which adopts multi-key HE to preserve client
privacy and delegates some operations to TEE [26]. Shi et al. de-
velop a secure aggregation framework built upon cryptographic
schemes, ensuring aggregator obliviousness [25]. Despite these
advances, current solutions remain resource-intensive for prac-
tical FL applications.

Weighted aggregation: A key challenge posed to FL is het-
erogeneity in the clients’ local datasets and computation speeds,
which drastically slows down the training process. Many efforts
have been devoted to addressing such challenge. Among them,
weighted aggregation is a promising technique to accelerate
convergence. Zeng et al. present a contribution-aware aggre-
gation scheme, considering higher loss values are indicative
of more substantial performance improvements [41]. Wu et al.
adaptively assign aggregation weights based on clients’ con-
tributions, measured by the angle between local and global
gradient vectors [53]. Deng et al. propose FAIR to quantify each
client’s learning quality and automatically determine the optimal
weights to enhance the global model quality [22]. Nonetheless,
existing aggregation solutions are mainly conducted on plain-
texts, rendering them inapplicable in HE-based FL scenarios.

Client selection: Client selection is widely adopted to ac-
celerate convergence and mitigate the straggler effect [10].
FedAvg [34] employs random selection, acting as a common and
general setting in FL. Reisizadeh et al. propose FLANP to start
training by exchanging models with fast clients and gradually
include slower clients over time [51]. Fraboni et al. introduce
clustered sampling based on similarity for client selection. How-
ever, directly transmitting gradients to the PS raises privacy

concerns and substantial communication overheads [35]. Kollias
et al. utilize the sketches of local models to select clients that
are similar to ours at a high level [54]. However, it can not
be applied to HE-based FL since after encrypting with HE,
the PS cannot calculate the sketch of the global model based
on the ciphertext. In contrast, FedPHE conducts sketch-based
client selection to cherry-pick representative clients that host
diverse models with fast training capability, greatly reducing the
communication overheads, without sacrificing model accuracy.

Differences from the prior work: Our prior work [1] primarily
addresses client heterogeneity, a challenge largely overlooked in
existing PHE-based FL methods. In contrast, FedPHE develops
a more secure PHE-based FL framework that mitigates security
threats from ciphertexts being intercepted and decrypted by
honest-but-curious clients. Specifically, it adopts a more realistic
threat model that accounts not only for privacy leakage during
aggregation but also for clients eavesdropping or colluding to
access specific local updates. A secret sharing–based obfus-
cating technique is designed to ensure encrypted local updates
are transmitted and aggregated in the obfuscated form, thereby
enhancing privacy. Additionally, FedPHE adopts a perturbed
sketch-based client selection to further mitigate the potential
privacy leakage from sketching process. Furthermore, a rigorous
security analysis is provided to demonstrate that neither the
honest-but-curious PS nor an honest-but-curious client capable
of launching eavesdropping or collusion attacks can deduce
private information about other clients’ datasets.

VI. CONCLUSION

In this paper, we present FedPHE, a secure and efficient PHE-
based FL framework to tackle challenges associated with secu-
rity threats and client heterogeneity. By adopting CKKS-based
PHE with sparsification and obfuscating, FedPHE achieves ef-
ficient secure aggregation that allows clients to only provide
obscured encrypted updates while PS can still perform the
aggregation by accounting for contributions of local updates
to the global model. To mitigate the straggler effect posed by
client heterogeneity, a perturbed sketch-based client selection is
conducted to cluster similar clients together and then cherry-pick
the fastest client from each cluster in a communication-efficient
and privacy-preserving manner. We provide rigorous security
analysis for FedPHE and verify its efficiency through extensive
experiments.

Although FedPHE is proven secure against honest-but-
curious adversaries, our method relies on a trusted KDC, which
is widely adopted but may be difficult to guarantee in practical
applications. In future work, we will focus on exploring dis-
tributed key generation methods that eliminate the need of KDC
while improving communication and computation efficiency.
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