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Abstract— Combined with many different attack forms,
advanced persistent threats (APTs) are becoming a major
threat to cyber security. Existing security protection works
typically either focus on one-shot case, or separate detection
from response decisions. Such practices lead to tractable analysis,
but miss key inherent APTs persistence and risk heterogeneity.
To this end, we propose a Lyapunov-based security-aware defense
mechanism backed by threat intelligence, where robust defense
strategy-making is based on acquired heterogeneity knowledge.
By exploring temporal evolution of risk level, we introduce
priority-aware virtual queues, which together with attack queues,
enable security-aware response among hosts. Specifically, a long-
term time average profit maximization problem is formulated.
We first develop risk admission control policy to accommodate
hosts’ risk tolerance and response capacity. Under multiple
attacker resources, defense control policy is implemented on
two-stage decisions, involving proportional fair resource allo-
cation and host-attack assignment. In particular, distributed
auction-based assignment algorithm is designed to capture uncer-
tainty in the number of resolved attacks, where high-risk host-
attack pairs are prioritized over others. We theoretically prove
our mechanism can guarantee bounded queue backlogs, profit
optimality, no underflow condition, and robustness to detection
errors. Simulations on real-world data set corroborate theoretical
analysis and reveal the importance of security awareness.

Index Terms— APT attacks, threat intelligence, security aware-
ness, priority-based response, distributed auction algorithm.

I. INTRODUCTION

TODAY’S security threat landscape is experiencing an
accelerating evolution, which is far more dangerous than

it was ten or even five years ago [1]. Enterprises all of sizes
may be overwhelmed by surging and increasingly sophisti-
cated attacks, especially APTs with the damage and costs
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multiplied at a shocking rate [2]. According to the statistics
of Arbor Networks, APTs have become the number one threat
on the mind of over 60% of enterprise participants, jumping
ahead of DDoS attacks by 2016 [3]. As ATPs’ two main
intrinsic properties that distinguish from typical attacks, both
advancement and persistence touch upon the diversification of
attack types and methods [4]. The former manifests stealth
and uncertainty in attack path, rendering traditional signature
approach targeting known attacks no longer adequate. While
the latter indicates they always process through multiple stages
over a long period of time, making single point detection
technology lose desired effects. All of this is placing enormous
pressure on enterprises to keep up the struggle and bringing
forward higher request to ‘security as a service’ offerings.

Intelligence-driven security protection integrating detec-
tion and response capabilities would be a promising
approach [5]–[6]. An intelligent defender is more informed
to identify potential risks and take decisive actions to defend
against APTs. With joint efforts of industry and academia,
dramatic improvements in intelligent-driven protection have
been made [7]. Cisco has stayed ahead of the latest threats by
virtue of threat-centric security architecture [8]. As leader in
intelligence-driven security-as-a-service, FireEye can identify
connections between alerts, prioritize alerts and ensure intel-
ligent and rapid response [9].

The key problem in many security protection domains
is how to efficiently allocate security resources to protect
targeted hosts from potential threats [10]. From perspective
of attack-defense confrontation, resource allocation problem
can be cast in game-theoretic contexts, providing insights on
effective defense decision-making through mutual strategic
behavior analysis. Extensive researches have been devoted
to this subject [11]–[14]. Another appealing line of research
focuses on risk management [15]–[16]. Using security
paradigms like attack graphs or attack trees enables defenders
assess risks based on cause-consequence relationships
between network states, and further determine minimum-cost
hardening measures.

We particularly identify two major challenges in defense
against APTs, each of which could be addressed in this
paper:

A. Dynamic and Long-Lasting Response

To capture APTs persistence, new requirements for attack
response have been raised, undercutting the ability of
traditional game models that target episodic and one-off
attacks [12]–[13]. Defenders are pressured to explore the right
talent to provide dynamic and long-lasting response. Such
demand is indispensable for keeping up with any change of
attack-defense confrontation and maintaining proactive posture
against APTs.
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B. Security-Aware Response

The conflict between limited defense budget and dramatic
rise in attack number highlights the necessity of security-aware
response, i.e., prioritizing high-risk attacks in response. Due
attention has been given to risk heterogeneity mainly on
attack rate in previous works [17]–[18]. However, which begs
the questions: besides heterogeneous rate, is there any new
prominent heterogeneity in host security state, especially under
threat intelligence.

To this end, we develop a Lyapunov-based intelligence-
driven defense mechanism to enable long-lasting and
security-aware response among risky hosts. Consider a defense
system with N independent hosts, an attacker and a defender.
Backed by threat intelligence, we construct an attack graph
that explicitly models attack-defense confrontation. Inspired
by FlipIt game, each confrontation outcome manifests itself
as attack graph changes, where each player takes control over
the target host by flipping it subject to a cost. From perspective
of the defender, total system profit is the difference between
defense utility gained from resolving attacks and defense cost
incurred. We are interested in the long-term time average
system profit.

Our study highlights the intriguing role of perturbed
Lyapunov optimization, where weights used for defense
decision-making are carefully perturbed. To accommodate host
risk tolerance and avoid resource under-utilization, we develop
tolerable risk admission control policy by pushing host risk
levels towards certain values. By exploring temporal evolution
of risk level, we formulate it as priority-aware virtual queues,
which combined with attack queues, provide an integration
of host heterogeneity to queueing optimization. The defense
control policy involving resource allocation and host-attack
assignment is conducted. Such assignment issue, a minimum
cost maximization flow problem in essence, is non-trivial to
solve, further complicated by uncertainty in the number of
resolved attacks. We construct a virtual auction market, where
attack events bid for response chances provided by associ-
ated hosts. The proposed distributed auction-based assignment
algorithm realizes security-aware response among hosts.

Our main contributions are highlighted as follows.

• We propose a Lyapunov-based intelligence-driven
defense mechanism against APTs. A salient contribution
of our approach is that, risk levels’ temporal evolution
is captured by priority-aware virtual queues, which
combined with attack queues enable security-aware
response among hosts. To our knowledge, we are the
first to explore security awareness in defense policy from
both attack and risk level perspectives.

• Backed by threat intelligence, we model attack-defense
confrontation process as the dynamic attack graph.
A long-term time average profit maximization problem
involving risk admission and response is formulated.
To accommodate host risk tolerance, we develop toler-
able risk admission control policy by perturbing weights
used for defense decision-making. For each host,
security-aware defense control policy is implemented
on two-stage decisions. Specifically, we first propose
distributed auction-based assignment algorithm, where
high-risk host-attack pairs are prioritized over others,
and then provide proportional fair resource allocation
among winning attack events. Furthermore, we theoreti-
cally prove our mechanism can guarantee bounded queue

Fig. 1. (a) General intelligence-driven defense system. (b) Illustration of the
proposed Lyapunov-based intelligence-driven defense mechanism.

backlogs, profit optimality and robustness to detection
errors.

• We apply our defense mechanism to a practical machine
learning-based anomaly detection system developed by
security company, Cyberxingan [19]. Extensive experi-
mental results validate our analysis on the efficiency of
our mechanism and reveal the importance of security
awareness.

In what follows, we introduce system model and problem
formulation in Section II. To proceed, we propose a
Lyapunov-based defense mechanism and analyze its perfor-
mance in Section III. In Section IV, we apply it to a prac-
tical detection system. Finally, simulations, related works and
conclusions are shown in Sections V, VI and VII. Due to
the space limitation, all technical proofs are provided in the
Appendix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. The Intelligence-Driven Defense System Model
Consider the general intelligence-driven defense system

consisting of two agents and N independent end hosts
containing valuable data that need to be protected, as shown
in Fig. 1. The agent who wants to attack the network to achieve
some specific goals is called the attacker, while the other agent
who tries to defend hosts and minimize attack effects is called
the defender. To avoid being trapped, the attacker usually uses
multiple zombie computers to launch attacks simultaneously.
Suppose one zombie computer carries out only one attack.1

For a zombie computer launching multiple attacks, we treat it
as multiple zombie computers. Backed by threat intelligence,
the defender first identifies potential risky zombie computers
and infected hosts, and then determines when and which
hosts to secure under limited defense budget. Such practice
actually constitutes the essence of intelligence-driven defense.
Specifically, “intelligence” refers to the threat information
acquired by the practical anomaly detection system, as shown
in Section IV, while “driven” suggests that our priority-based
response policy designed later highly depends on detection
results. The time is slotted for t ∈ T = {0, 1, · · ·}, and the
following processes will be performed for each time slot:
• Attack Detection: Backed by threat intelligence, potential

attacks are expected to be identified. The acquired threat
knowledge can be explicitly captured by dynamic attack
graph.

1In the rest of this paper, we will use “zombie computer” and “attack”
interchangeably. The same is with “host” and “attack queue”.
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Fig. 2. An example of attack graph with two hosts and four zombie
computers.

• Risk Response: Under Lyapunov optimization, optimal
response decisions are determined, where distributed
auction-based assignment algorithm is designed for solu-
tion optimality with guaranteed finite termination.

• Security State Update: Any move of attack-defense
confrontation may result in attack graph changes, which
are desired to be closely followed, such as edge adding
for attack detection and edge updating/deleting for risk
response.

1) Attack Detection: Imagine the typical attack-defense
confrontation. The attacker schemes to launch attack via
zombie computer j , and unfortunately host i is on the target
list. Such attack is detected at a certain time via detection
scheme. Once realizing the potential risk posed by attack j ,
the defender does everything to resolve it, and then host i will
be recovered after a period of response time. The FlipIt game
was recently proposed in security community to model such
confrontation process, especially in the context of advanced
persistent threats [15].2 In typical FlipIt, two players (called
herein defender and attacker) continuously compete for the
control of the target host. Each player takes control over it
by flipping subject to a cost. Most importantly, a player only
finds out system state when moving, instead of immediately
knowing when the other player moves. As the extension of
FlipIt game, our work focuses on multi-host setting, which
together with limited resource constraints poses challenges
in modeling attack-defender interaction and characterizing
optimal strategies.

Formally, let U[t] and V [t] denote the sets of hosts and
zombie computers at slot t . In the following, we use U ,
V instead of U[t],V [t] when there is no confusion. Formally,
the confrontation of the entire system can be captured by an
attack graph GAttack = (U,V, E) shown in Fig. 2. Host node
ui is introduced in U for every host i ∈ U , and zombie node
v j is introduced in V for every detected zombie computer
j ∈ V . E is a set of system security state, namely which hosts
are compromised by which zombie computers at which attack
and risk levels. If host i is under attack j , we add an edge
(ui , v j ) ∈ E between ui and v j with the combination weight
of attack load and risk level denoted by (σ j , pi j ). A desirable
defense mechanism is able to capture dynamics of zombie
node set V and edge set E .

Consider a set of attacks arrive online.3 Backed by threat
intelligence, each attack j can be specified by a tuple

2Actually, the FlipIt game model of interest can be implemented in a
variety of current real-world applications. Take zero-day exploit with the
target resource being computing devices [20], for example. The attacker aims
to compromise the device by exploiting a software vulnerability, while the
defender focuses on keeping the device clean through software reinstallation,
patching, or other defensive steps. The FlipIt provides guidance on how to
implement effective decisions, i.e., “When to launch the next attack?” for the
attacker and “How regularly should I clean machines?” for the defender.

3In practice, the distribution of attack arrival is random and unpredictable.
And even if predictable, the prediction accuracy cannot be guaranteed. It is
reasonable to assume that attack arrival is random and as the consequence of
network optimization, response decision is strategic [12]–[13].

θ j = (t j , ω j , σ j , N j ), where it is detected at time t j with
risk score or seriousness, ω j ∈ [ωmin, ωmax]; attack load
σ j ∈ [σmin, σmax] captures the number of slots requested
for response, determined by how long it takes attacker to
compromise one host. N j is the set of infected hosts under
the attack of j . Such threat information is shared by all
attack events launched via the same zombie computer. Regard
any attack arrival time as the time when it is detected. The
instantaneous attack arrival brought by zombie computer j to
host i is

Aij [t] = σ j · 1{ j∈Ni [t ], j /∈N i [t−1]}. (1)

Attack arrivals of the system can be given by the vector
A[t] = {Aij [t]|i ∈ U, j ∈ V }, where 0 ≤ Aij [t] ≤ Amax.
With the development of detection technology, attacks usually
can be detected with satisfactory accuracy. In particular,
we implement our defense mechanism into practical detection
system in Section IV, where robustness to detection errors is
also discussed. We’re, as a consequence, going to focus on the
case A[t] is known to the defender at the end of slot t .

2) Risk Response: Define the active zombie set of
host i as the set of attacks it is suffering, i.e., N i [t] ={

j | j ∈ V ,
(
ui , v j

) ∈ E
}
. Based on acquired heterogeneity in

host security state, the defender next takes the corresponding
response actions involving target attack selection and secu-
rity resource allocation.4 In practice, limited defense budget
may be in conflict with dramatic rise in attack number,
making it not feasible to resolve all risky attacks at the same
time. To capture resource availability to host i , we intro-
duce response indicator vector r i [t] = {ri j [t]| j ∈ N i [t]},
where ri j [t] = 1 represents attack event j gets resolved
in protecting host i and ri j [t] = 0 otherwise. Inspired by
non-preemptive scheduling proposed in [21], we consider
a more general model: attack j who gets resolved at t
continues to occupy resources for σ j slots, directly affecting
resource provisioning and response decisions at subsequent
slots. Host i will be recovered after σ j slots. For each
host, we explicitly model limited defense budget by placing
an upper bound on the number of resolved attack events,
i.e.,

∑
j∈Ni [t ] ri j [t] ≤ Bi ,∀i ∈ U , where budget Bi is

assumed to be host-specific to capture heterogeneity in host
response capacity. To avoid response chances being concen-
trated on certain attacks, suppose each attack has a parallelism
bound E j , i.e., at most E j attack events launched via zombie
computer j can be run in parallel. The response parallelism
constraint can be formally represented as

∑
i∈N j

ri j [t] ≤
E j ,∀ j ∈ V . The response rate that host i obtains can thus be

ri [t] =
∑

j∈N i [t ] σ j · ri j [t], (2)

characterizing the amount of attack loads resolved at slot t .
In addition to such response decisions, how to allocate
resources among target attacks is of equal importance to
improve defense efficiency, where the allocated resources
directly affect how long it will take the attacker to compro-
mise hosts again. Obviously, inefficient allocation will reduce
response efficiency and worsen security state of the whole
system. In protecting host i , the proportion of resources
allocated to attack j denoted by bi j [t], should satisfy∑

j∈Ni [t ] bi j [t] · ri j [t] = 1.

4Security resources range from computing resources for vulnerability scan-
ning, to hardware resources for intrusion detection, and so on.
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Under limited defense budget, the above response process
begs the question: what if there exist too many attack events
left untreated? In general, attacks even minor vulnerabili-
ties, if left untreated too long, are more likely to incur
irreparable losses and pose huge pressure to the whole defense
system. To avoid this dilemma, we suppose response delay
for any attack is upper bounded by Dmax. Such guarantee
is violated when explosive attack events go beyond the
defender’s response capacity. We model the potential dropping
of an attack when its response guarantee cannot be met.
The dropping decision can be captured by a binary decision
variable di j [t], where di j [t] = 1 represents attack j is dropped
from host i ’s active zombie set and di j [t] = 0 otherwise.
Taking attack loads into account, the dropping rate of host i
can be characterized as

di [t] =
∑

j∈Ni [t ]
σ j · di j [t], (3)

which is upper-bounded by dmax. In practice, however,
the defender may never drop any detected attacks, espe-
cially APTs with specific goals. The “dropping” here can
be interpreted as follows. The defender maintains a set of
regular resources (under limited budget) while keeping a set
of backup resources just in case, whose provisioning is always
expensive due to the advance of adopted defense technology.
An attack will be “dropped” if there haven’t been available
regular resources until the maximum response delay. Then
more efforts (i.e., expensive backup resources) will be invested
to resolve it subject to a dropping penalty. We introduce the
Maximum Response Guarantee (MRG) requirement, which
is promising to realize high response efficiency under stable
security state.

Definition 1: The MRG requirement is satisfied only if all
detected attack events will be either resolved or dropped before
the maximum response delay Dmax.

3) Security State Update: Security state can be captured
by attack graph GAttack. For each host node ui , neighboring
zombie nodes denote attacks that host i is suffering, and
host-zombie edge weights suggest attack and risk levels
that host i is under the attack. Intuitively, any move of
attack-defense confrontation corresponds to attack graph
changes. To facilitate online defense mechanism design, secu-
rity state updates should closely follow such changes, mainly
reflected in the following three aspects.
• Active Zombie Set: Attack arrival or response may lead

to the changes of active zombie set N i [t]. Specifically,
add a new zombie node to N i [t] when its launched attack
events are admitted for response; and delete zombie nodes
from N i [t] if all of their target hosts are recovered from
being compromised.

• Attack Level: Attack level are captured from the
perspective of untreated attack loads. Intuitively,
stochastic response and dropping process, together with
time-varying attack arrivals, may bring about dynamics of
host attack loads. Taking ATPs persistence into account,
we apply queueing theory to handle such dynamics in
the long-term confrontation. In particular, each host i
maintains an individual attack queue with queue backlog
Qi [t] characterizing the amount of untreated attack
loads. We adopt the convention that attack response and
dropping at slot t happen at the beginning of the slot,
while arrivals happen at the end, which coordinates the
design of threat intelligence-driven defense mechanism.
For attack queue of host i ∈ U , queueing dynamics can

be described as

Qi [t + 1] = max {Qi [t] − ri [t] − di [t], 0} + ai [t], (4)

where ai [t] = ∑
j∈V ai j [t] denotes the increment of

attack loads brought by newly arrived attack events, and
0 ≤ ai j [t] ≤ Ai [t] indicates not all attack events are
allowed into queues due to limited response capacity.
To prevent security state worsening, one promising
approach is to resort to advanced defense techniques to
address these attack events, rather than admitting them
into queues for endless response waiting. A queue is
stable only if it has a bounded time-average backlog [22],

i.e., Qi = lim sup
t→∞

1
t

t−1∑

τ=0
E{Qi [τ ]} <∞.

• Risk Level: Risk level, combined with attack level, consti-
tutes the joint weight for host-zombie edges in attack
graph, accounting for heterogeneity in host security state.
For each host, the value of risk level depends on risk
seriousness resulted from target zombie computers as well
as how long it has been compromised. Specifically, risk
seriousness captured by risk score ω j , may vary from one
attack to another due to the diversity of adopted attack
techniques. Too many untreated attacks further pose huge
pressure to defense mechanism. The longer one host is
compromised, the more serious damage it will suffer,
especially for dedicated and purpose-built APTs. We are
inspired to model the dynamic risk level of each attack
event j towards host i as an exponential function, i.e.,

pi j [t] = ω j e
t−t j · 1{ j∈N i [t ]}, t j ≤ t ≤ t j + Dmax, (5)

where t − t j denotes the time when host i has been
compromised. Once attack event j associated with host
i is identified, i.e., 1{ j∈Ni [t ]} = 1, add edge (ui , v j ) into
attack graph, and risk level is initialized as pi j [t j ] = ω j .
Under MRG requirement, delete this edge if j fails to be
resolved at t = t j + Dmax, and the maximum risk level
pi j [t j+Dmax] = ω j eDmax is obtained. Thus, pmin = ωmin

and pmax = ωmaxeDmax. Denote the risk level vector for
host i ∈ U as pi [t] = {pi j [t]| j ∈ N i [t]}. Our defense
mechanism is designed especially for attack-intensive
scenarios. To guarantee high response efficiency, it’s
desired to enable priority-based response especially under
limited budget. Let’s introduce the concept of Preference
Ranking (PR) requirement for further analysis.

Definition 2: Given risk level vector pi [t], host i ’s pref-

erence ranking Ri [t] = {R1
i , · · · , R|N i [t ]|

i } in response is a
permutation of {1, · · · ,|N i [t]|}. The PR requirement holds if

R j
i

{
< Rk

i , if pi j [t] < pik [t],
> Rk

i , if pi j [t] ≥ pik[t], (6)

for any j ∈ {1, · · · , |N i [t]| − 1} and k ∈ { j, · · · , |N i [t]|}.
It states the defender prefers attacks with high risk score and
early detection time in defense process. Under this concept,
the higher preference ranking an attack event possesses,
the more likely it will be selected for response.

B. Problem Formulation
1) Defense System Profit:

a) Defense utility: The defender collects defense utility
every time an attack event is resolved. We introduce a
security-aware utility to characterize the efficiency of defense
decisions in alleviating risk pressure, which is determined
by two factors, i.e., risk seriousness captured by risk score
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and allocated security resources. Specifically, high-risk attacks
pose great pressure to response process and may result in huge
defense cost. While resource allocation exerts direct influence
on future host’s security state, and the more resources are
allocated, the stronger risk resistance it possesses, indicating
the attacker needs to take longer time to compromise it again.

Intuitively, only maximizing total security-aware utility will
lead to severe starvation for low-risk host-attack pairs with
no defense resources allocated, making it hard to keep those
attacks under control. Therefore, fairness is another issue that
cannot be ignored in resource allocation, which is crucial for
long-term system stability [23]. In particular, we adopt propor-
tional fairness, a common fairness metric that was proposed
by Kelly [24]. In protecting host i , under resource alloca-
tion decision bi j [t] and response decision ri j [t], the corre-
sponding security-aware utility function can be defined as
U(bi j [t]pi j [t]ri j [t]). According to [24], proportional fairness
can be formally defined as follows.

Definition 3: A vector of resource allocation bi [t] =
{bi j [t]| j ∈ N i [t]}, with N i [t] being the set of attacks related
to host i , is proportionally fair if it is feasible, and if for any
other feasible allocation vector b′i [t] = {b′i j [t]| j ∈ N i [t]},
the aggregate of proportional changes is either zero or nega-

tive, i.e.,
∑

j∈Ni [t ]
b′i j [t ]−bi j [t ]

bi j [t ] ≤ 0.
Consider a small perturbation b′i j [t] = δbi j [t]+bi j [t] which

increases U(bi j [t]pi j [t]ri j [t]) providing that
∑

j∈N i [t ] δbi j [t]·
U ′(bi j [t]pi j [t]ri j [t]) > 0. From the definition of propor-
tional fairness, we have

∑
j∈Ni [t ]

δbi j [t ]
bi j [t ] > 0, which can

be rewritten as
∑

j∈Ni [t ] (ri j [t]log(bi j [t]pi j [t]))′δbi j [t] > 0.
Thus, it follows that the above proportionally fair allo-
cation can be represented by a local maximum of the
logarithmic utility function. Since logarithmic function is
differentiable and strictly concave, it has only one maximum
and the local maximum is also the global maximum. Accord-
ingly, the total security-aware utility under proportionally
fair resource allocation can be expressed by Ui [t] =∑

j∈Ni [t ] ri j [t]log(pi j [t]bi j [t]).
b) Defense cost: Attack events violating MRG require-

ment should be “dropped” to prevent security state out of
control. Dropping decisions together with response decisions,
constitute the major security-aware defense strategies. There is
an instantaneous defense cost associated with attack response
and dropping due to resource expenditure (including regular
and backup resources). The total number of resolved attack
events associated with host i is ni [t] =∑

j∈Ni [t ] ri j [t]. Denote
ci [t] as the average cost incurred for resolving unit attack
load and host i ’s response cost at slot t can thus be Cr

i [t] =∑
j∈Ni [t ] σ j ri j [t]ci [t]. Denote a penalty of α j enforced for

dropping attack event j , where α j > maxi∈Uσ j ci [t].5 For
host i , expenditure on penalty occurs at slot t if there are
dropped attack events, with the total amount of Cd

i [t] =∑
j∈Ni [t ] α j di j [t].
The instantaneous system profit can be defined as the

difference between overall defense utility and cost, i.e., f [t] =∑
i∈U Ui [t] − (Cr

i [t] + Cd
i [t]). The time average expected

profit of the defense system is fav = lim sup
t→∞

1
t

∑t−1
τ=0 E { f [t]}.

5Such condition not only corresponds to the fact that dropping cost is
expected to be larger than all potential serving cost due to the usage of
more advanced defense techniques, but also ensures high-efficiency response
in designing defense control policy later.

TABLE I

MAJOR NOTATIONS

2) Defense Problem: This paper aims to develop
an intelligence-driven defense mechanism to enable
security-aware response under limited defense budget. The
potential benefits of security-awareness can be fully explored
from the perspectives of both attack level and risk level, where
high-risk host-attack pairs are given priority in response.

We say a defense policy � is feasible if for all
t , the defender first maintains security state φ[t] =
{(N i [t], Qi [t], pi j [t])}, and then makes defense decisions
η[t] = {(ai j [t], bi j [t], ri j [t], di j [t])}, where both MRG and
PR requirements are satisfied. Our objective is to design a
feasible policy � to maximize system profit, i.e.,

P1: max
�

f �
av (7)

s.t.
∑

j∈Ni [t ]
σ j di j [t] ≤ dmax

i , ∀i ∈ U (8)

∑

j∈Ni [t ]
bi j [t]ri j [t] ≤ 1, ∀i ∈ U (9)

∑

j∈Ni [t ]
ri j [t] ≤ Bi , ∀i ∈ U (10)

∑

i∈N j

ri j [t] ≤ E j , ∀ j ∈ V (11)

ai ≤ r i + di , ∀i ∈ U (12)

MRG and PR Constraints. (13)

Specifically, constraint (8) ensures a certain response efficiency
by placing an upper bound for the amount of dropped attack
loads. Constraint (9) guarantees security resources will not
be over-utilized. Constraints (10) and (11) specify limited
defense budget and parallelism constraints. Constraint (12)
guarantees the stability of attack queues. To facilitate reading,
the summary of major notations is tabulated as in Table I.

III. SECURITY-AWARE DEFENSE MECHANISM

A. Addressing MRG and PR Requirements

To meet MRG requirement, we associate each attack queue
Qi ,∀i ∈ U with a delay-aware virtual queue Zi . Such practice
is inspired by ε-persistent service queue technique [24], which
can ensure bounded worst-case response delay. The queue
backlog of Zi is updated by

Zi [t + 1] = max
{

Zi [t] − ri [t]−di [t] + εi 1{Qi [t ]>0}, 0
}
, (14)

where εi > 0 are pre-specified constants. The intuition is that
Zi has the same service process as attack queue Qi being
ri [t] + di [t], but has an arrival process that adds εi whenever
Qi is non-empty, ensuring queue length of Zi grows if there
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are attack events in Qi . By leveraging defense strategies under
network stability, attack response delay will be upper bounded.

Proposition 1: Suppose an online defense mechanism is
implemented so that Qi [t] ≤ Qmax

i and Zi [t] ≤ Zmax
i , where

Qmax
i and Zmax

i are finite upper bounds of the queue backlogs.
The worst-case response delay for host i is bounded by

Dmax
i = ⌈(

Qmax
i + Zmax

i

)
/εi

⌉
, (15)

where 	x
 denotes the smallest integer that is no less than x .
Accordingly, all attacks are either resolved or dropped within
Dmax = max Dmax

i slots.
Under PR requirement, high-risk attacks are prioritized over

others in response, facilitating security-aware defense mecha-
nism design. Recall that risk level pi j [t] = ω j et−t j 1{ j∈Ni [t ]},
whose time evolution can be captured as

pi j [t + 1] = pi j [t] · e = pi j [t] + pi j [t](e − 1). (16)

To enable priority-based response, we introduce a novel
priority-aware virtual queue [25] with queue backlog Hi[t] =∑

j∈Ni [t ] pi j [t], which is actually the sum of risk level of

untreated attack events and provides the basis for identi-
fying which hosts are at high risk levels for which zombie
computers’ attack. For attack j associated with host i , add risk
level pi j [t] into Hi when j is admitted into attack queue Qi ,
and remove pi j [t] from Hi when j is dropped or resolved.
In view of dynamics of risk level and active zombie set, queue
backlog of Hi evolves as follows

Hi [t + 1] = max
{

Hi [t] + βi [t] − r ′i [t]−d ′i [t], 0
}+ a′i [t],

(17)

where r ′i [t] = ∑
j∈ri [t ] pi j [t]e =∑

j∈Ni [t ] eσ j pi j [t]ri j [t], βi [t] =∑
j∈Ni [t ] pi j [t] (e − 1) , d ′i [t] = ∑

j∈di [t ] pi j [t]e =∑
j∈Ni [t ] eσ j · pi j [t]di j [t], a′i [t] = ∑

j∈ai [t ] pi j [t] =∑
j∈V pi j [t]ai j [t], respectively.6 Under queue stability,

virtual queue Hi is stable only if attack queue Qi is stable
and risk level pi j [t] is limited.

B. Dynamic Algorithm Design

Let �[t] = [Q[t], Z[t], H[t]] as the aggregate queue
vector. To start, we define the perturbed Lyapunov
function [22] as

L(�[t]) = 1

2
‖Q[t]‖ + 1

2
‖Z[t]‖ + 1

2
‖H[t] − θ‖ , (18)

where θ = θi · 1N with θi being perturbation parameters.
We can understand the perturbation from the following two
aspects. First, analogous to immune system, hosts usually
possess certain risk tolerance. Network stability can still be
guaranteed when pushing Hi [t] towards a small tolerable
risk level related to θi . Here θi is assumed to be host
specific, since different hosts may have various available
security resources and defense ability. Second, to guarantee
no-underflow in attack queue, θi can be carefully leveraged
to enhance response efficiency. Under no-underflow condi-
tion, each host will have certain amount of risks to resolve,
preventing resources unallocated for a long time. To achieve
queue stability, we define Lyapunov drift as 
(�[t]) =

6We use ai [t] to denote the set of newly arrived attack events associated
with ai [t]. The same is with r i [t] and ri [t], d i [t] and di [t].

E {L(�[t + 1])− L(�[t])|�[t]} to capture expected changes
in the quadratic function of queue backlogs over each slot.
We incorporate system profit into Lyapunov drift, providing
network stability and profit maximization jointly. At every slot,
we try to minimize the drift-plus-penalty function greedily, i.e.,

min 
(�[t])− V E { f [t]|�[t]} , (19)

where V > 0 is a tunable parameter weighting how much
importance we stress on maximizing system profit.

Proposition 2: Under any feasible defense policy �,
we have


(�[t])− V E { f [t]|�[t]}
≤ B1 + B2[t] +

∑

i∈U

E
{

Qi [t]ai [t] + (Hi [t] − θi ) a′i [t]|�[t]
}

−
∑

i∈U

E{(Qi [t] + Zi [t])di [t] + (eHi[t] − θi )d
′
i [t]

− V Cd
i [t]|�[t]}

−
∑

i∈U

E{(Qi [t] + Zi [t])ri [t] + (eHi[t] − θi ) r ′i [t]

+ V (Ui [t] − Cr
i [t])|�[t]} (20)

where B1 = 1
2

∑
i∈U (σmax Bmax

i + dmax
i )2 + (Amax)2 +

max{(σmax ·
Bmax

i +dmax
i )2, ε2

i }+((σmax Bmax
i +dmax

i )σmaxωmaxe1+Dmax)2+
(Amax ·
ωmaxeDmax)2 + (Qmax

i ωmaxeDmax )2(e2−e)

(σmin)
2 > 0 is a finite constant,

and B2[t] =∑
i∈U εi Zi [t]+(1−e)θi Hi [t] is a known constant

at slot t since queue backlogs are known at t .
Remark: Minimizing drift-plus-penalty in (19) is thus equiv-

alent to minimizing the Right-Hand-Side (RHS) of (20), which
amounts to minimizing its last three terms. Such problem
involves risk admission and response subproblems, which are
decoupled in decision variables. Under equivalence to drift-
plus-penalty minimization, we have the following two parallel
parts constituting the main idea of our mechanism.

1) Tolerable Risk Admission Control Policy: Risk admission
decisions can be made by minimizing the third term of the
RHS of (20). Since admission decisions of different hosts
are independent from each other, we can concurrently obtain
ai [t] = {ai1[t], · · · , ai|V |[t]} by solving

min
ai j [t ]

∑

j∈V

ai j [t] · (Qi [t] + (Hi [t] − θi ) pi j [t])

s.t. 0 ≤ ai j [t] ≤ Aij [t] (21)

The optimal solution thus reduces to a simple threshold
rule:

ai j [t] =
{

0, if Qi [t]/pi j [t] + Hi [t] > θi ,

Aij [t], if Qi [t]/pi j [t] + Hi [t] ≤ θi .
(22)

Remark: As for such threshold-based admission strategy,
Qi [t]/pi j [t] + Hi [t] can be viewed as equivalent threat situa-
tion involving host security state and attack risk level. When
threat situation is no larger than θi , newly detected attack
event j will be admitted into system with the increase of
attack level Aij [t] and risk level pi j [t]. But j will be rejected
when threat situation exceeds θi (i.e., severe host security
state or high-risk attack). The intuitive behind no admission is
that current risk arrivals go beyond host response capability,
and the best way to avoid security state worsening is to seek
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Fig. 3. Response problem interpreted under MCMF.

for more advanced defense techniques to resolve it. Compared
to low-risk attack events, high-risk attacks are less likely to
be admitted.

2) Security-Aware Defense Control Policy: Once admitted
into attack queue Qi , attack event j ∈ N i [t] next will be
responded or dropped. The defense control policy determines
which host-attack pairs to drop or resolve with what resource
allocation proportion to maximize the last two terms of the
RHS of (20), where security-awareness is fully explored by
highlighting high-risk attack events.

The defense problem is, in essence, a Minimum Cost
Maximization Flow (MCMF) problem [26] shown in Fig. 3.
Taking defense system illustrated in Fig. 2 for example,
we create a source node S and connect it to all zombie nodes
{v1, v2, v3, v4}, and create a destination node D and connect
all host nodes {u1, u2} and the specially created drop node X
to D. We add an edge from v j to X if there exists at least one
associated host i with positive dropping weight Y D

i j [t] (to be
specified later), and add an edge from v j to ui if response
weight Y R

i j [t] > 0 (to be specified later). We further assign
one (capacity, cost) pair to each edge. The capacity from S to
each zombie node is the number of launched attack events with
cost 0. Since each zombie computer can launch at most one
attack towards a host, the capacity for each host-zombie edge
is 1 with cost −Y R

i j [t]. Consider all dropped attack events via
the same zombie node as a whole, and the capacity from each
zombie node to X is 1 with cost

∑
i∈N j
−Y D

i j [t]. The capacity

from a host to D is host response capacity Bi [t] with cost 0.
The capacity and cost for drop-destination edge are ∞ and 0.
In addition, each zombie node is labeled with weight E j to
accommodate parallelism bound. The desired defense control
policy involves the following two phases.

a) Attack dropping: Since dropping decisions d i [t] =
{di1[t], · · · , di|N i [t ]|[t]} of different hosts are independent
from each other, we can determine them in a fully distributed
manner by solving

max
di j [t ]

∑

j∈N i [t ]
di j [t](σ j (Qi [t]+Zi [t]+(eHi[t] − θi )

× e pi j [t])−V α j )

s.t.
∑

j∈Ni [t ]
σ j di j [t] ≤ dmax

i , di j [t] ∈ {0, 1} (23)

Actually, the above maximization problem is equivalent to
the typical Maximum-Weight Matching (MWM) problem.
Denote the weight of decision variable di j [t] as Y D

i j [t] =
σ j (Qi [t] + Zi [t] + (eHi [t] − θi)epi j [t]) − V α j , which is
determined for any j ∈ Ni [t]. The optimal solution for (23)
would prefer to make di j [t] with larger positive weight as
big as possible, especially under constraint σ j di j [t] ≤ dmax

i .
Locate the optimal attack event j∗ = arg max j∈Ni [t ]Y

D
i j [t]

Fig. 4. An example of attack graph with two hosts and four zombie
computers.

for each host, where ties are broken randomly. There are two
cases: (1) If Y D

i j∗ [t] ≤ 0, objective function in (23) is negative
for all attacks, suggesting large dropping penalty and good
security state. In this case, host i has enough security resources
and there is no need to drop any attack. Set di j [t] = 0 for
all j ∈ N i [t]. (2) If Y D

i j∗ [t] > 0, current security state goes
beyond host response capacity and penalty for dropping j∗
is relatively low. This attack should be dropped, otherwise it
cannot receive prompt response, further aggravating system
security state. The optimal solution for (23) is to set di j∗ [t]
with larger positive weight as 1 under allowable dropping
constraint, i.e., σ j di j∗ [t] ≤ dmax

i . Then perform the dropping
process on Qi [t]\ j∗ similarly if the leftover allowable dropped
loads dmax

i − σ j∗di j∗ [t] > 0, otherwise end dropping process.
b) Risk response: For each host, decisions on r i [t] =

{ri1[t], · · · , ri|N i [t ]|[t]} and bi [t] = {bi1[t], · · · , bi|N i [t ]|[t]}
can be made by solving

max
∑

j∈N i [t ]
ri j [t](σ j (Qi [t] + Zi [t] + (eHi[t] − θi )e pi j [t])

+ V log(pi j [t]bi j [t])− V σ j ci [t])
s.t.

∑

j∈Ni [t ]
ri j [t] ≤ Bi ,

∑

i∈N j

ri j [t] ≤ E j , ri j [t] ∈ {0, 1}
∑

j∈Ni [t ]
bi j [t]ri j [t] ≤ 1, bi j [t] ≥ 0. (24)

Such problem, compared to dropping issue, is rather more
complicated. It’s actually a two-stage decision problem, where
in the first stage, the defender determines which attack events
towards which hosts to resolve, and with this information,
then determines how much resources are allocated to target
attack events. Therefore, one feasible solution is backward
induction, i.e., first to convert it to a pure resource allocation
problem, and on that basis, to address host-attack assignment
problem.

i) The second stage problem: We first consider resource
allocation in the second stage, where host-attack assignment
r i [t] is taken as a given parameter. The total number of
resolved attack events towards host i is ni [t] =∑

j∈Ni [t ] ri j [t].
The goal of this stage is to find the optimal alloca-
tion or proportional fair share bi [t] = {bi1[t], · · · , bini [t ][t]}
such that

max
bi j [t ]

∑

j∈{k|rik [t ]=1,∀k∈N i [t ]}
ri j [t]log(pi j [t]bi j [t])

s.t.
∑

j∈{k|rik [t ]=1,∀k∈N i [t ]}
bi j [t]ri j [t] ≤ 1, bi j [t] ∈ [0, 1].

(25)

The following proposition suggests the optimal resource allo-
cation among target attack events.

Proposition 3: For any host i , the optimal security
resource allocation is equal allocation, i.e., bi j [t] =
1/ni [t],∀ j ∈ {k|rik [t] = 1, k ∈ N i [t]}.
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ii) The first stage problem: With resource allo-
cation information bi [t], the goal of this stage is to
determine an optimal host-attack assignment r[t] ={
ri j [t]|i ∈ U, j ∈ N i [t]

}
that

max
ri j [t ]

∑

i∈U

∑

j∈Ni [t ]
ri j [t](σ j (Qi [t]+Zi [t] + (eHi [t]−θi)e pi j [t]

− V ci [t])+ V log
pi j [t]
ni [t] )

s.t.
∑

j∈N i [t ]
ri j [t] ≤ Bi ,

∑

i∈N j

ri j [t] ≤ E j , ri j [t] ∈ {0, 1}.

(26)

Such assignment problem is actually a variation of MWM
problem, where Y R

i j [t] = σ j (Qi [t] + Zi [t] + (eHi[t] − θi )

e pi j [t] − V ci [t])+ V log
pi j [t ]
ni [t ] can be viewed as the weight of

decision ri j [t], showing the effectiveness of resolving attack
j in protecting host i . Compared with dropping problem
in (23), the only difference is that the weight Y R

i j [t] is not
constant and related with assignment decision ri j [t] since
ni [t] =∑

j∈Ni [t ] ri j [t]. The dynamics in ni [t] further increase
the difficulty in guaranteeing solution optimality, making tradi-
tional approaches to MWM no longer applicable.

Based on MCMF in Fig. 3, we first construct the bipartite
response graph GResponse = (U ′,V ′, E ′) shown in Fig. 4.
To accommodate defense budget and attack parallelism
constraints, we introduce Bi virtual host (VHost) nodes
u1

i , u2
i , · · · , u Bi

i in the first vertex set U ′ for each host i ∈ U ,

and E j virtual zombie (VZombie) nodes v1
j , v

2
j , · · · , v

E j
j in

the second vertex set V ′ for each zombie computer j ∈ V .
We add an edge (uk

i , v
l
j ) ∈ E ′ between uk

i and vl
j , k ∈

{1, · · · , Bi }, l ∈ {1, · · · , E j }, with the weight of W kl
i j [t] =

Wij [t] + V log (k−1)k−1

kk , where Wij [t] = σ j (Qi [t] + Zi [t] +
(eHi[t] − θi )e pi j [t] − V ci [t])+ V logpi j [t].

Proposition 4: The host-attack assignment optimization
problem in (26) is equivalent to the MWM problem based
on response graph GResponse under proportional fairness guar-
antee.

Remark: One well-known approach to MWM is distributed
auction algorithm, but complex host-attack interactions make
applying the general solution directly less desirable [27]–[28].
Note that Wlk

i j [t] consists of Wij [t] and V log (k−1)k−1

kk , where
the former captures utility achieved from resolving j , and
the latter is penalty on the number of resolved attacks since
defense efficiency is lowered with the reduction of allocated
resources. These two parts can be maintained separately
by zombie computers and hosts, where risk heterogeneity
and dynamics in ni [t] can be addressed. By exploiting this
structure, we imagine a virtual auction market, where zombie
computers bid for response chances provided by associated
hosts. For each slot t , we develop a distributed auction-based
assignment algorithm, concluded in Algorithm 1, involving the
following steps, where references to t are dropped to facilitate
expression.
• Initialization: Each host generates VHost nodes uk

i with

price πk
i = −V log (k−1)k−1

kk . Each zombie computer
generates VZombie nodes vl

j and measures the utility
Wij achieved from hosts. VHost and VZombie nodes are
initially unassigned.

Algorithm 1 Host-Attack Assignment Algorithm

1 Initialize Assignment R← 0, VZombie set Sj ← {vl
j },

VHost set Si ← {uk
i }, VHost price πk

i ←−V log (k−1)k−1

kk ;
2 Calculate response utility Wij for each host-zombie pair;
3 while Assignment not finalized do
4 πi ← minkπ

k
i , k∗i ← arg mink πk

i ;
5 ◦ Phase 1: Bidding. For each zombie computer j ,
6 if VZombie node vl

j not assigned then
7 l̂ j ← minl l;
8 for all hosts i under j ’s attack do
9 ρi j ← Wij − πi , i∗ ← arg mini ρi j ,

10 ρ∗j ← maxi ρi j , ρ′j ← maxi �=i j ρi j ;

11 Submit v
l̂ j
j ’s bid bid j ← ρ∗j − ρ′j + ε to host i∗;

12 ◦ Phase 2: Assignment. For each host i ,
13 if collects bids from potential zombie computers then
14 win j ← arg max j bid j ,
15 Assign VHost k∗i to attack win j ’s VZombie l̂win j

and remove k∗i and l̂win j from Si and Sj ;

16 π
k∗i
i ← π

k∗i
i + bidwin j ;

17 return R;

• Auction: This process can be divided into multiple itera-
tions. At the beginning of each iteration, host i announces
price πi = minkπ

k
i to zombie computers. In bidding

phase, each zombie computer chooses target VZombie

l̂ j = min l and calculates margin ρi j = Wij −πi achieved
from associated hosts. Locating host i∗ with the highest
margin ρ∗j and host i ′ with the second highest margin ρ′j ,
the zombie submits bid bid j = ρ∗j − ρ′j + ε to host i∗
or one of them randomly in case of tie. In assignment
phase, each host picks VZombie node with the highest
bid as winner and removes the corresponding VHost and
VZombie nodes from alternative sets. The price of VHost
nodes is raised by the highest bid. A new iteration starts
after VHost nodes announce the new assignment.

• Termination: The auction process terminates when there
is no change in assignment.

Theorem 1 (Finite Termination [26]): Let Ea = max j E j .
The distributed auction-based assignment algorithm terminates
with a feasible host-attack assignment which is within εEa |V |
of being optimal for any positive ε.

Remark: Since the price for any assigned VHost node
increases by at least ε in each iteration, the maximum
number of iterations for bidding is upper bounded by Ea

ε ·
max{σ j (Qi [t] + Zi [t] + (eHi[t] − θi )e pi j [t] − V ci [t]) +
V log pi j [t]}. Accordingly, the tradeoff between convergence
time and response efficiency can be achieved by tuning the
value of ε.

Furthermore, we summarize our complete defense algorithm
to solve one-shot minimization problem (20) in Algorithm 2,

C. Queueing Performance Analysis

Theorem 2 (Bounded Queues): Suppose 0 ≤ εi ≤ dmax
i ,

α j > maxi∈U σ j ci [t]. If defense decisions and security state
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Algorithm 2 Dynamic Defense Algorithm At Slot t

1 ◦ Risk Detection and Admission Control
2 Implement detection scheme to obtain newly arrived

attack set Nd with type θ j = (t j , ω j , σ j , N j ),∀ j ∈ Nd;
3 for Each detected attack j ∈ Nd do
4 for Each host i ∈ N j do
5 Determine admission decisions ai j [t] by (22)

6 ◦ Risk defense control
7 Apply Algorithm 1 to obtain host-attack assignment R
8 for Each host i ∈ U do
9 Ri [t] ← { j |ri j [t] = 1,∀ j ∈ N i [t]};

10 for Each assigned attack j ∈ Ri [t] do
11 Determine resource allocation bi j [t] using (25)

12 Determine dropping decisions di j [t] for each attack
j ∈ N i [t] by solving (23)

13 ◦ Security State Update
14 for Each host i ∈ U do
15 for Each attack j ∈ N i [t] do
16 pi j [t] ← e · pi j [t]
17 Update Qi [t], Zi [t], Hi [t] according to (4), (14), (17).

updates are done by Algorithm 2 with V > 0, we have

Qi [t] ≤ Qmax
i


= θi pmax + Amax (27)

Zi [t] ≤ Zmax
i


= V αmax + eθi pmax + εi (28)

Hi [t] ≤ H max
i


= eθiσ
max pmax + V αmax

e2σmin pmin + βmax
i + (a′i )max

(29)

where βmax
i = (e − 1)Qmax

i pmax and (a′i )max = Amax pmax.
Theorem 3 (No Underflow Condition): For any perturbation

parameter θi , if it satisfies θi ≥ 2e2 pmax(Bi + dmax
i ) −

V σminci [t ]
epmax , attack queue Qi will not suffer from underflow at

slot t .
Remark: Theorem 3 illustrates how to leverage θi to guar-

antee no underflow condition. Intuitively, the larger dmax
i is

(or the less response cost ci [t] is), the larger the lower bound
of θi will become. Taking Fig. 2 as an example, there are 2
hosts under the attack of 4 zombie computers. Suppose host
u1 contains more valuable data than host u2 that needs to be
protected. Obviously, the defender is willing to invest more
budget to respond to high-risk attacks. Under the same attack,
host u1 usually suffers from much larger loss than host u2.
Hence the tolerable risk level of host u1 denoted by θ1 should
be set smaller than that of u2 denoted by θ2.

Theorem 4 (No Dropping Condition): There is no attack
dropping for any host if the total response rate

∑
i∈U ri [t]

satisfies |U|σmax(Amax+ εmax+ V loge
σmax + (epmax)2( (e−1)Qmax

σmin +
Amax)) ≤ �−σmax

� σmin((2 + e3(pmin)
2
)
∑

i∈U ri [t] + e(e − 1)
θmin pmin), where εmax = max εmax

i and Qmax = max Qmax
i .

Theorem 5 (Profit Optimality): Under non-preemptive
scheduling, we group � time slots into a refresh frame, where
� > σmax. Suppose unit response cost ci [t] ∈ [cmin

i , cmax
i ] is

ergodic processes. Under no attack dropping condition, there
exists some δ > 0 such that the time-average system profit

achieved by Algorithm 2 is within a constant gap from the

offline optimal system profit f
(1+δ)�

�−σmax , i.e.,

lim
η→∞

1

η�

η−1∑

n=0

(n+1)�−1∑

t=n�

E{ f [t]}

≥ f
(1+δ)�

�−σmax − (� − σmax)(� − σmax − 1)B3

2�V

− B1

V
− � − 1

2V

∑

i∈U

(ε2
i + (Amax)2

+pmax(
(e − 1)Qmax

σmin + Amax)(θi (1− e)+ pmax Amax))

− (� − σmax)(� − σmax − 1)

2�

∑

i∈U

σmax Bi (c
max
i − cmin

i )

− (σmax)2

�

∑

i∈U

Bi (c
max
i + logωmax + e pmaxθi

V
) (30)

where B3 =∑
i∈U Biσ

max(Amax+εmax+2σmax Bi+(epmax)2 ·
( (e−1)Qmax

σmin + Amax + eσmax Bi )+ V logωmax).

Threat knowledge is often assumed to be detected accurately
in traditional risk management. Consider a realistic scenario.
What if defense strategies are made based on detected risk
levels (i.e., ω̂ j ) and attack levels (i.e., Q̂i [t], Ẑi [t], Ĥi[t])
that differ from actual threat knowledge (i.e., ω j , Qi [t], Zi [t],
Hi [t])?

Theorem 6 (Profit Optimality With Detection Errors):
Suppose there exists constants ξω, ξ Q such that at all t ,
|ω̂ j − ω j | ≤ ξω, |X̂i [t] − Xi [t]| ≤ ξ Q for Qi [t], Zi [t], Hi [t]
hold. We have

lim
η→∞

1

η�

η−1∑

n=0

(n+1)�−1∑

t=n�

E{ f [t]}

≥ f
(1+δ)�

�−σmax − (� − σmax)(� − σmax − 1)B3

2�V

− B ′1
V
− � − 1

2V

∑

i∈U

(ε2
i + (Amax)2

+ pmax(
(e − 1)Qmax

σmin + Amax)(θi (1− e)+ pmax Amax))

− (� − σmax)(� − σmax − 1)

2�

∑

i∈U

σmax Bi (c
max
i − cmin

i )

− (σmax)2

�

∑

i∈U

Bi (c
max
i + logωmax + e pmaxθi

V
) (31)

where B ′1 = B1+∑
i∈U (ξ Q(εi+θi (1−e)+Amax(1+ pmax))+

Bi (2σmax+epmax)+dmax
i (2+epmax))+ξωeDmax(Amax(H max

i +
ξ Q + θi)+ (Biσ

max + dmax
i )(e2 H max

i + e2ξ Q + eθi)).
Remark: Comparing (30) with (31), we observe there exists

a gap
B
′
1−B1
V between the optimal system profits in cases of

accurate knowledge and detection errors. As expected, control
parameter V can be carefully leveraged in online scheduling to
further reduce the effect of detection errors. Especially when V
goes to infinity, the optimal profit gap tends to 0. It is indicated
that with inaccurate detected threat information, larger V is
desired to achieve the same system profit as with accurate
knowledge, but may result in higher queue backlogs as shown
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in Theorem 2. Thus, our mechanism is robust to detection
errors, but at the expense of decreased stability.

IV. APPLYING SECURITY-AWARE DEFENSE MECHANISM

TO THE ANOMALY DETECTION SYSTEM

The implementation of our defense mechanism is driven by
threat intelligence. Due to diversity of attack means, there is
no standard method for acquiring threat knowledge, and many
threat intelligence platforms such as FireEye have managed
it in their own ways [9]. Here we apply our mechanism to a
practical anomaly detection system deployed by Cyberxingan
Technology Ltd. just as an initial attempt for defending APTs.
• Feature Extraction and Fusion: Stealthy APTs tend to

exhibit no evident character but always differentiate them-
selves from normal subjects in feature distribution, making it
hard to identify anomalies only by volume features. To capture
dispersal degree, entropy features are introduced as the basis
of the detection scheme design [29]. Based on collected
two weeks’ worth of log data from widely deployed secu-
rity devices, a 7-tuple <t,pkts, bytes, HsIP, HdIP, HsPort,
HdPort> is particularly extracted, where the first two volume
features denote the size and number of packets at time t ,
and the other entropy features denote entropy information
about source address, destination address, source port and
destination port. To address the feature redundancy issue
caused by high dependency among such features and detection
errors, we incorporate principle component analysis-based
feature fusion scheme into outlier detection, mapping data
onto a new set of principal components. The principal compo-
nents are ordered by the amount of energy in the data they
capture.
• Density-Based Clustering and Attack Identification:

Several recent works have been devoted to outlier mining and
among them, unsupervised K -means clustering is promising
to deal with difficulty in acquiring label data [30]-[32].
In view of its inherent drawbacks, e.g., predetermining
cluster centroid number or falsely clustering caused by
unbalanced density, we further adopt density-based clustering
for outlier mining, which can identify centroids with high
density and large distance from others. Consider a set of
time-series data points S = {xm}Nm=1 with IS = {1, · · · , N}.
Under cut-off kernel model, we define point density as
ρm= ∑

n∈IS\{m} χ(dmn − dc), where dc is cutoff distance,
dmn is distance between xm and xn , χ(x) equals 1 if x < 0
and 0 otherwise. Denote I S

m = {k|k ∈ IS , ρk > ρm}. The
minimum distance of xm from points with higher density,
dmin

m , equals minn∈IS {dmn} if I S
m �= ∅, and maxn∈IS {dmin

n }
if I S

m = ∅. From ρm vs dmin
m figure, we find the majority

of points are close to coordinate, and only few points are
of high ρm and dmin

m , which are potential to be centroids.
xm is in cluster A only if it has a minimum distance from
A’s centroid. Let dm denote the distance between xm and
its centroid. Intuitively, points with large distance and small
density are more likely to be outliers. We assign each point
one outlier score Om = O(dm , ρm) to characterize risk
seriousness of the system at that point. Joint with security
experts’ experience, retrospective analysis is performed on
detected outliers and then high-risk attacks are identified.
• Threat Information Acquisition: Backed by threat intel-

ligence, threat information θ j = (t j , ω j , σ j , N j ) for each
detected attack can be acquired. That is, which hosts
(i.e., i ∈ N j ) are compromised by attack j at which time

Fig. 5. System profit, defense utility, response cost and dropping cost vs. T .

Fig. 6. (a) Queue backlogs vs. T . (b) System profit vs. T .

(i.e., t j ) at which attack and risk levels (i.e., σ j and ω j ).
Based on how long it takes attacker to compromise hosts,
security experts first determine attack load σ j , i.e., the number
of slots requested for response. Risk score ω j here is estab-
lished on outlier feature, capturing attack security state from
the perspective of risk seriousness. Since risk seriousness
escalates over time, we suppose there is a one-to-one corre-
spondence between ω j and detection time t j . The earlier
attacks are detected, the lower risk score will be. Hence we
capture risk score by monotone increasing risk function h(·),
i.e., ω j = h(Om , t j ).

V. SIMULATION RESULTS

To show the applicability and effectiveness of our
mechanism, we experiment with a real-world dataset with
acquired threat knowledge introduced in Sec. IV. Attack
events within this dataset include scanning, key-compromise
impersonation, zero-day exploit, and so on. To accommodate
diversity in attack security state, attack load and risk score
are adjusted to σ j ∈ [1, 5] and ω j ∈ [1, 6]. The attacker
schemes to attack |U| = 214 hosts via zombie computers
with different IP addresses. Host heterogeneity in response
capacity is leveraged from two aspects, i.e., dynamic resources
provisioned for left-over attack events and resources allocated
to attacks newly selected to respond under defense budget
uniformly distributed in [1, 10]. We implement our mechanism
for T = 310 time slots with parameters Dmax = 10
and compare it with two other baseline mechanisms:
(1) FIFO-Based Response (FFR) Mechanism [33]: For
any host, attack events are processed in First-In First-Out
(FIFO) order; (2) Random Response (RR) Mechanism [34]:
Attack events queued at any host are processed
randomly.

Fig. 5 demonstrates the variance of system profit, defense
utility, response cost and dropping cost over time. We observe
a stable system profit is achieved by our defense mechanism.
The dropping cost approaching zero indicates our mechanism
can ensure high response rate, which is consistent with our
analysis on no attack dropping shown in Sec. III.

We illustrate the comparison of security risk and system
profit in terms of T shown in Fig. 6(a) and Fig. 6(b). As
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Fig. 7. (a) Average system profit vs. V . (b) Average queue backlogs vs. V .

expected, our mechanism is superior to others in alleviating
risk pressure while guaranteeing high system profit. The intu-
itive is that attacks with high-risk score or early detection time,
under dropping control policy, are more likely to be dropped
when current attack state goes beyond host response capa-
bility. In our mechanism, high-risk attacks are given priority,
which is promising to avoid security state spinning out of
control and reduce incidence of attack dropping. High response
completion is further ensured by adjusting host response
capacity. While in FFR mechanism, attacks are resolved in
FIFO order and response chances are more likely to be seized
by low-risk attacks with early detection time and large attack
loads, increasing the risk of high-risk attacks’ being dropped.
High attack and risk levels are reflected in increased queue
backlogs. Compared to RR mechanism, FFR can alleviate risk
pressure posed by attack events with early detection time,
guaranteeing a shortened queue length. Thus, queue backlog
in our mechanism is approaching to a steady state with the
highest speed of convergence. Under priority-based response,
large amount of high-risk attacks are potential to be resolved
before maximal response delay, greatly reducing incidence of
attack dropping. High system profit can thus be achieved in our
mechanism.

We illustrate the impact of control parameter V on system
stability. Fig 7(a) shows the average system profit converges
quickly as V grows, and the highest profit is achieved by
our mechanism. From Fig 7(b), we observe our mechanism is
superior to other mechanisms in alleviating risk seriousness,
where all average queue backlogs grow linearly with V .
Combining these two figures coincides with our analysis about
Theorems 2 and 5, where V can be leveraged to resolve the
tradeoff between system profit and security risks.

We try to explore the influence of detection errors on
defense efficiency. For each arrived attack, we add a random
detection error (±50%, uniformly distributed) to attack load
and risk score it brings. We conduct our mechanism on
such error dataset. For any attack, exact threat information
is known by defender only when it gets resolved. We illus-
trate the differences in average system profit reduction and
average queue backlog increase due to injected detection
errors with varying V , where results on original datasets
without errors serve as baseline. Fig 8(a) shows for all V
we experiment with, the difference in profit reduction is
between −0.45% and 2.7%. As shown in Fig 8(b), detection
errors result in increased queue backlogs within the range of
−12% to 10%. These results indicate our mechanism is robust
to detection errors by leveraging V , but at the expense of
decreased stability.

Fig 9(a) shows average number of auction iterations
required under our assignment algorithm for different system
sizes. For system with |U| = 214, the algorithm takes an
average of 95 iterations each slot to converge to an optimal

Fig. 8. (a) Differences in system profit reduction vs. V . (b) Differences in
queue backlogs increase vs. V .

Fig. 9. (a) Average number of iterations vs. Host number. (b) Fairness among
attack events.

host-attack assignment. Through curve fitting, we obtain the
curve of average number of iterations, i.e., 124.9log|U| −
191.1, suggesting average number of iterations increases as
O(log|U |). We study Jain’s fairness index [27] for average
response rate among attack events, which is defined as J =

1
|U |

∑|U |
i=1

(
∑|V |

j=1 σ j r i j )
2

|V |∑|V |j=1 (σ j r i j )2
with r i j = lim sup

t→∞
1
t

∑t−1
τ=0 E{ri j [t]}.

As shown in Fig 9(b), we observe our mechanism has the
highest fairness index. The reason that other mechanisms
are poor in fairness is that attack events are resolved in
FIFO or random orders without considering diversity of risk
seriousness. It is more likely that response chances are seized
by certain attacks with large attack loads, increasing the risk of
high-risk attacks’ being dropped when current attack state goes
beyond host response capacity. The gap among attack response
rates is thus expanded. While our mechanism adjusts response
capacity dynamically based on host security state, and gives
priority to high-risk attacks in response, guaranteeing much
high response rates with a small increase in average delay.

VI. RELATED WORK

A. Risk Management

The prominent intelligent tendency in risk management
supported by emerging threat intelligence has promoted the
resolution of defending against APTs [5]–[9], where the key
issue is how to acquire threat knowledge accurately [29]–[32]
and assess risks efficiently [35]–[36].

Access to threat knowledge begins with the identifica-
tion of attack features and potential threat sources, which
paves the way for making efficient defense strategies.
Veeramachaneni et al. [7] combined analysts’ experience with
machine learning techniques to provide an artificially intelli-
gent solution. Zheng et al. [37] proposed a time associative
bandit model for optimal timing of security updates, where
defender can obtain partial feedback under stealthy attacks via
online learning. Although power of machine learning is lever-
aged, these studies do not consider detection error that might
appear in practice, which is our perspective. Zhan et al. [17]
presented a methodology for predicting attack rates more
accurately by accommodating extreme-value phenomenon.
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However, this work does not answer the fundamental question
in intelligence acquisition: besides attack rate, is there any
other salient heterogeneity in host security state, especially
with the advances of detection technology? We tackle this open
problem by designing an intelligence-driven defense mecha-
nism from perspectives of risk seriousness and attack rate,
enhancing defender’s ability to respond quickly, decisively and
effectively to potential risks.

In practice, threats change over time, as do risks.
As expected, there also exists a large body of work for
risk assessment by using paradigms like attack graphs and
attack trees to capture dynamics of security state. Under
flow dependency graph, Rezvani et al. [15] considered the
provenance and interdependency between hosts and flows to
assess risk on network activities. While this work can show
good effect for given accurate threat knowledge, there is,
however, an aspect of detection error to security planning
process. Providing better robustness to detection errors consti-
tutes one of key theoretical contributions of our mecha-
nism. Poolsappasit et al. [16] designed a Bayesian attack
graph-based risk management framework to assess risks and
select hardening measures to maximize resource utilization.
But they only focus on centralized case to globally furnish
defender with better control of risk assessment, which is
insufficient in the face of large networks with intensive attacks
and rapidly changing threats. In this paper, we fill the void with
a distributed auction-based assignment algorithm to determine
minimum-cost response decisions with guaranteed finite termi-
nation. Backed by threat intelligence, we harness Lyapunov
optimization to explore dynamics in security awareness and
enable long-term response.

B. Defense Strategy Making

There has been extensive research attempting to make
effective defense strategies.

One line of research focuses on determining which attacks
to respond. In this paper, we build a connection between
target attack selection and response scheduling design.
Wei et al. [38] analyzed defensive abilities of three classic
queue management algorithms under DDoS attack. Consid-
ering SYN flooding attack as an unfair scheduling that
gives more chances to attack requests, Jamali and Shaker [33]
presented several popular scheduling algorithms, where
attack requests under FIFO are served in the order of
arrival time. Xu et al. [34] modeled the attack-defense
interaction as Markov process, where node security state
(secure or compromised) is captured by a random variable.
However, existing response scheduling works typically sepa-
rate attack detection from response process, making it hard
to keep system security state in control, especially under
limited defense budget. To break this barrier, we propose a
novel security-aware defense mechanism based on acquired
threat intelligence. In particular, the potential benefit of
security-awareness is fully explored from perspectives of both
attack level and risk level, where high-risk host-attack pairs
are given priority in response.

Another line of research focuses on using incentive mech-
anism to improve the efficiency of defense strategies [39].
Hu et al. [40] investigated the joint threats from APT
attacker and insiders for one target system resource, and
proposed a two-layer differential game model including a
defense/attack game between defender and attacker and an
information-trading game among multiple insiders. In practical

scenarios, however, attacker can simultaneously attack
multiple targets. Inspired by prospect theory, Xiao et al. [12]
developed a dynamic storage defense game, where the
protected interval is modeled as part of players’ utility func-
tions while ignoring strict resource constraints. For a large
attack-intensive system, ignoring such constraints can lead
to either resource over- and under-provisioning or revenue
loss. Intuitively, multi-target setting together with resource
constraints imposes significant challenges in achieving a
tradeoff between response efficiency and number of targets.
To this end, we construct a virtual auction market to cope
with uncertainty in the number of resolved attacks. As a future
work, it would be worthwhile to further extend our mecha-
nism to large-scale networks [41]. Under resource constraints,
Zhang et al. [13] proposed a two-player game model for
defending against APTs with asymmetric feedback structure,
where attacker can fully observe target states while largely
hiding its actions from defender. The major advantage of our
work over it is to integrate detection into defense strategy
making, and capture intelligent defender’s ability to acquire
threat knowledge, which are vital to enabling high response
efficiency. All of this is producing new challenges for defense
mechanism design.

VII. CONCLUSION

We provide a Lyapunov-based intelligence-driven security-
aware defense mechanism against APTs. Backed by threat
intelligence, we develop tolerable risk admission control policy
to accommodate host risk tolerance, and further implement
security-aware defense control policy, where high-risk host-
attack pairs are prioritized over others. Simulations based on
real-world dataset validate the effectiveness of our mechanism.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Let ai [t] > 0 represent attack loads that enter
Qi at any slot t , which are actually part of Qi [t + 1].
By contradiction, we suppose there exist parts of ai [t]
that remain in Qi after time t + Dmax

i . The total depar-
ture loads during Dmax

i slots following t is at most Qmax
i ,

i.e.,
∑t+Dmax

i
τ=t ri [τ ] + di [τ ] ≤ Qmax

i . In the subsequent Dmax
i

slots after t , if Qi [τ ] equals 0, all target attack loads are
processed within Dmax

i slots; otherwise Zi has a constant
arrival rate εi , and the same departure rate ri [t] + di [t] as
that in Qi . By dynamics of delay-aware virtual queues (14),
we obtain for all τ ∈ {t + 1, · · · , t + Dmax

i }, Zi [τ +
1] ≥ Zi [τ ] − ri [τ ] − di [τ ] + εi . Summing both sides
over τ ∈ {t + 1, · · · , t + Dmax

i } yields Zi [τ + Dmax
i +

1] − Zi [τ + 1] ≥ εi Dmax
i − ∑t+Dmax

i
τ=t ri [τ ] + di [τ ]. Since

Zi [t + 1] ≥ 0 and Zi [t + Dmax
i + 1] ≤ Zmax

i ,

we obtain
∑t+Dmax

i
τ=t ri [τ ] + di [τ ] ≥ εi Dmax

i − Zmax
i . Since

∑t+Dmax
i

τ=t ri [τ ] + di [τ ] ≤ Qmax
i , we have Qmax

i > εi Dmax
i −

Zmax
i . This implies Dmax

i <
⌈(

Qmax
i + Zmax

i

)
/εi

⌉
, contra-

dicting the definition of Dmax
i given in (15). Thus the propo-

sition follows. �
APPENDIX B

PROOF OF PROPOSITION 2
Proof: Since Q2

i [t + 1] − Q2
i [t] ≤ (ri [t] + di [t])2 +

a2
i [t] + 2Qi [t](ai [t] − ri [t] − di [t]), Z2

i [t + 1] − Z2
i [t] ≤

(εi − ri [t] − di [t])2 + 2Zi [t](εi − ri [t] − di [t]) and
(Hi [t + 1] − θi )

2 − (Hi [t] − θi)
2 ≤ (r ′i [t]+d ′i [t])2 +
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(a′i [t])2 + β2
i [t] − 2βi [t](r ′i [t]+d ′i [t]) + 2(Hi [t] − θi )(a′i [t] +

βi [t] − r ′i [t]−d ′i [t]), summing the above yields 
(�[t]),
as shown at the bottom of this page.

Adding −V f [t] to both sides and taking conditional
expectation on both sides given �[t], the proposition
is proven. �

APPENDIX C
PROOF OF PROPOSITION 3

Proof: We drop references to t in addressing such alloca-
tion issue. Given assignment Ri , optimal allocation problem
is b∗i = arg maxbi j

∑
j∈{k|rik=1,∀k∈N i } log(ω j bi j ) = arg maxbi j∑

j∈{k|rik=1,∀k∈N i } logbi j + logω j , where the second term
is a constant about host target attack events. Then
this optimal allocation is equivalent to maximizing the
geometric mean, i.e., maxbi j

∑
j∈{k|rik=1,∀k∈N i } log bi j ⇔

maxbi j
1
ni

log(
∏ni

j=1 bi j ) ⇔ maxbi j
ni
√

bi1bi2 · · · bini . Since
geometric mean is no larger than arithmetic mean, we have
ni
√

bi1bi2 · · · bini ≤ bi1+bi2+···+bini
ni

, where the equality holds
if and only if bi1 = · · · = bini . Hence to maximize
overall defense efficiency, bi j should be equal for all attacks,
i.e., bi j = 1/ni . Thus, the proposition follows. �

APPENDIX D
PROOF OF PROPOSITION 4

Proof: Let wi j = σ j (Qi+Zi+(eHi−θi )e pi j−V ci ). The
objective of assignment problem for ni zombie computers is
OA =∑

i∈U
∑

j∈N i
ri j (wi j + V logω j

ni
) =∑

i∈U
∑ni

k=1 wiik +
V log

�
ni
k=1ωik

n
ni
i

. Denote OM as the objective of MWM. Consider

this problem from the following two aspects:
• OM ≤ OA: Construct an assignment in GResponse where

uk
i is assigned to vl

j . The sum of edge weights W k
ij is OM ≤

∑
i∈U

∑
j∈Ni

ri j (wi j+V log
(k−1)k−1ω j

kk ) =∑
i∈U

∑ni
k=1 wiik +

V log
(k−1)k−1ωik

kk =∑
i∈U

∑ni
k=1 wiik + V log

�
ni
k=1ωik

kk = OA .

• OM ≥ OA: Consider the dual problem of MWM,
which assigns a non-negative price to each host and finds the
minimum price vertex cover in GResponse [28]. Denote g(k) =
−V log (k−1)k−1

kk , satisfying g(k) ≥ 0 and g(k) < g(k − 1).
To avoid negative weights, we set each edge weight W ′ki j =
W k

ij + h1 + h2 ≥ 0, where adjustment factors h1 = g(ni ),
h2 = g(Bi ) + |mini {wi j + logω j }|. Hence each zombie
computer j is assigned a utility associated with host i , Ji j =

h2 + wi j + logω j , and each uk
i is assigned a price πi , which

equals h1 if k = 1, h1 − g(k) if 1 < k ≤ ni and 0 if k > ni .
We obtain Ji j ≥ 0, πi ≥ 0, W ′ki j ≤ Ji j+πi . For any assignment
R on GResponse, we have

∑
(uk

i ,v
l
j )∈R W ′ki j ≤

∑
(uk

i ,v
l
j )∈R(πi +

Ji j ) ≤ ∑
uk

i ∈U ′ πi + ∑
v l

j∈V ′ Ji j = ∑
i∈U (ni (h1 + h2) +

log
�

ni
k=1ωik

n
ni
i

+∑ni
k=1 wiik ). Since GResponse is a complete bipar-

tite graph with ni ≤ Bi , we have ni edges in MWM.
By removing adjustment factors on edge weights, ni (h1+h2),
we get

∑
(uk

i ,v
l
j )∈R Wij ≤ OA .

Above all, the equivalence proposition follows. �

APPENDIX E
PROOF OF THEOREM 1

Proof: Suppose the algorithm does not terminate. At each
iteration initiated with one unassigned attack, the assigned
host-attack pair number increases by one or remains constant.
If termination does not occur, only the latter case can happen,
where at least one price πi of VHost increases by ε and at
least one profit ρi j of VZombie decreases by ε. Hence subset
U∞ = {i ∈ U | lim

k→∞πk
i = ∞} of VHost nodes that receive an

infinite number of bids, and subset V∞ = { j ∈ V | lim
k→∞ρk

i j =
−∞} of VZombie nodes that bid infinite times are empty.
Then prices πi of VHost nodes in U∞ must tend to ∞. For
VZombie node j ∈ V∞, profit ρi j = maxi∈N j {Ji j − πi }
must tend to −∞. Thus, Ji j − πi tends to −∞ for i ∈ N j .
We obtain N j ⊂ U∞,∀ j ∈ V∞, i.e., VZombie nodes in V∞
can only be assigned to VHost nodes in U∞. According to
ε-CS bidding process, i.e., Wij −πi ≥ maxl∈N j {Wlj −πl}−ε,
Ji j−πi ≥ ρi j−ε for every assigned pair, and each VHost node
in U∞ can only be assigned to a VZombie node from V∞.
In the case of no termination, at least one unassigned VZombie
node from V∞ will be assigned. The number of VZombie
nodes in V∞ is larger than the number of VHost nodes in U∞,
contradicting the existence of a feasible assignment under
condition N j ⊂ U∞. Thus, the algorithm must terminate. �

APPENDIX F
PROOF OF THEOREM 2

Proof: When t = 0, Qi [0] = 0 < Qmax
i . Suppose Qi [t] ≤

Qmax
i for some slot t . We next show it also holds for slot t+1

from the following two cases: (1) Case 1: When Qi [t] ≤
θi pmax, Qi [t + 1] will increase at most Amax, i.e., Qi [t +
1] ≤ Qi [t] + Amax ≤ θi pmax + Amax. (2) Case 2: When
Qi [t] > θi pmax, Qi [t] − θi pi j [t] + Hi [t]pi j [t] > 0. Through
admission control policy, ai j [t] = 0 for all j and no attack will


(�[t]) = L{�[t + 1]} − L{�[t]} ≤
∑

i∈U

(σmax Bi + dmax
i )2 + (Amax)2

2
+ Qi [t](ai [t] − ri [t] − di [t])

+
∑

i∈U

max{(σmax Bi + dmax
i )2,εi

2}
2

+ Zi [t](εi − ri [t] − di [t])

+
∑

i∈U

((σmax Bi + dmax
i )σmaxωmaxe1+Dmax)

2 + (AmaxωmaxeDmax)
2

2

+
∑

i∈U

(Qmax
i ωmaxeDmax)

2
(e2 − e)

2(σmin)
2 + (1− e)θi Hi [t] +

∑

i∈U

(Hi [t] − θi )a
′
i [t] + (θi − eHi [t])(r ′i [t] + d ′i [t])
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be admitted into Qi . We obtain Qi [t + 1] ≤ Qi [t] ≤ Qmax
i .

Hence Qi [t] ≤ θi pmax + Amax for all t .
When t = 0, Zi [0] = 0 < Zmax

i . We next prove if the
inequality holds for Zi [t], it will also hold for Zi [t + 1].
Consider the following two cases: (1) Case 1: When Zi [t] ≤
V αmax+eθi pmax, we have Zi [t+1] ≤ Zi [t]+εi ≤ V αmax+
eθi pmax+ εi since queue length of Zi can increase by at most
εi at one slot. (2) Case 2: When Zi [t] > V αmax + eθi pmax,
Zi [t] > V α j + eθi pi j [t] for all j , suggesting objective of
dropping problem (23) is positive. Then at most dmax

i attack
loads are dropped. We get Zi [t+1] ≤ Zi [t]−ri [t]−dmax

i +εi ≤
Zi [t] ≤ Zmax

i since εi ≤ dmax
i . Hence Zi [t] is bounded by

V αmax + eθi pmax + εi at slot t .
When t = 0, Hi [0] = 0 < H max

i . Suppose this
inequality is true for some slot t . Consider queue length
bound in the following two cases: (1) Case 1: When
Hi [t] ≤ eθiσ

max pmax+V αmax

e2σmin pmin , Hi [t + 1] ≤ Hi [t] + βi [t] +
a′i [t] ≤ eθi σ

max pmax+V αmax

e2σmin pmin + βmax
i + (a′i )max = H max

i . (2)

Case 2: When Hi [t] > eθiσ
max pmax+V αmax

e2σmin pmin , e2σ j pi j [t]Hi [t] ≥
e2σmin pmin Hi [t] > eθiσ

max pmax + V αmax > eθiσ j pi j [t] +
V α j > eθiσ j pi j [t] + V σ j ci [t], suggesting objectives of (24)
and (23) are positive. The defender resolves at most Bi attacks
and drops at most dmax

i attack loads. Since r ′i [t]+d ′i [t] =
eBi pi j [t]+edmax

i pi j [t] ≥ r ′i+d
′
i , the maximum of a′i [t]+βi [t]

should satisfy stability constraints, i.e., r ′i + d
′
i ≥ β i + a′i .

We get Hi [t + 1] = Hi [t] − (r ′i [t]+d ′i [t] − βi [t] − a′i [t]) ≤
Hi [t] ≤ H max

i . Hence virtual queue length bound (29) holds
at any slot. �

APPENDIX G
PROOF OF THEOREM 3

Proof: For risk queue Hi , resolved risks r ′i [t] ≤ eBi pmax

and dropped risks d ′i [t] ≤ edmax
i pmax. There exists no risk

underflow if Hi[t] ≥ epmax(Bi + dmax
i ). Suppose Hi [t] ≥

epmax(Bi + dmax
i ) and consider the following two cases:

(1) Case 1: When Hi [t] ≥ 2epmax(Bi + dmax
i ), Hi [t + 1] ≥

Hi [t] − r ′i [t]−d ′i [t] ≥ epmax(Bi + dmax
i ). Thus, underflow will

not occur. (2) Case 2: When epmax(Bi + dmax
i ) ≤ Hi [t] ≤

2epmax(Bi+dmax
i ), eHi [t]− V σminci [t ]

epmax ≤ 2e2 pmax(Bi+dmax
i )−

V σminci [t ]
epmax . Since θi ≥ 2e2 pmax(Bi+dmax

i )− V σminci [t ]
epmax and α j >

max σ j ci [t], we have 0 ≥ epmax(eHi [t] − θi − V σminci [t ]
epmax ) ≥

e pi j [t] (eHi[t]−θi− V σminci [t ]
e pi j [t ] ) > e pi j [t](eHi[t]−θi− V α j

e pi j [t ]).
By solutions to problems (23) and (24), no attack will be
resolved or dropped, i.e, ri [t] = di [t] = 0. Thus, Hi [t + 1] ≥
Hi [t] − r ′i [t]−d ′i [t] = Hi [t] ≥ epmax(Bi + dmax

i ). Above all,
the theorem follows. �

APPENDIX H
PROOF OF THEOREM 4

Proof: Dropping decisions di j [t] = 0,∀ j ∈ N i [t]
if σ j (Qi [t] + Zi [t]+ (eHi [t] − θi )e pi j [t]) ≤ V α j . Since
σ j (Qi [t] + Zi [t] + e2 pi j [t]Hi[t] − eθi pi j [t]) ≤ Wij [t] =
σ j (Qi [t] + Zi [t] + e2 pi j [t]Hi [t] − eθi pi j [t] − V ci [t]) +
V logpi j [t], no dropping condition holds only if V α j ≥ Wij [t].
Next prove Wij [t] is upper bounded. Construct a new queue
corresponding to host i with queue backlog Wij [t]. At each
slot, the input of queue is no larger than max σ j (ai [t] +
εi + e2 pi j [t](βi [t] + a′i [t])) + V loge = σmax(Amax + εmax +
V loge
σmax +(epmax)2( e−1

σmin Qmax+ Amax)). The output is no smaller

than min σ j (2ri [t] + e2 pi j [t]r ′i [t] + e(e − 1)θi pi j [t]) =
σmin((2+ e3(pmin)

2
)ri [t] + e(e− 1)θmin pmin). Under assign-

ment algorithm, attacks with larger weight Wij [t] are given
priority. Such assignment is a variation of MaxWeight algo-
rithm proposed by Maguluri et. al. [42]. The constructed
queue is stable if total arrival rate is smaller than �−σmax

�

fraction of total response rate, i.e., |U |σmax(Amax + εmax +
V loge
σmax + (epmax)2( e−1

σmin Qmax + Amax)) ≤ �−σmax

� σmin((2 +
e3(pmin)

2
)
∑

i∈U ri [t] + e(e − 1)θmin pmin). Under stability
constraint, queue backlog Wij [t] is bounded. Hence the
theorem follows. �

APPENDIX I
PROOF OF THEOREM 5

Proof: Under no attack dropping condition, we have
di j [t] = 0. There exists an offline optimal algorithm that
achieves the optimal system profit under any supportable

attack arrival rate vector λi , which is within �−σmax

� frac-
tion of capacity region �i . There exists δ ≥ 0 such

that (1+δ)�
�−σmax λi ∈ �i . Let a∗i j [t], r∗i j [t] and n∗i [t] denote

the decisions achieving the offline optimal time average

profit f
(1+δ)�

�−σmax . Then �−σmax

�

∑
j∈Ni [n�] σ j E{r∗i j [n�]} ≥

1+δ
�

∑(n+1)�−1
t=n�

∑
j∈V E{a∗i j [t]}. Summing both sides in drift

plus penalty (20) for t from n� to (n + 1)� − 1, we get

E{L(�[(n + 1)�])− L(�[n�])− V
(n+1)�−1∑

t=n�

f [t]|�[n�]}

≤ �B1 +
�−σmax−1∑

t=0

t B3 +
∑

i∈U

�−1∑

t=0

t (ε2
i
+ (Amax)2

+
∑

i∈U

�−1∑

t=0

t pmax((1−e)θi+ pmaxAmax)(
e − 1

σmin Qmax+Amax))

+
∑

i∈U

�−σmax−1∑

t=0

tσmax Bi V (cmax
i − cmin

i ))

+
∑

i∈U

Bi (σ
max)2(V cmax

i + e pmaxθi + V logωmax)

+
∑

i∈U

∑

j∈Ni [n�]
σ j eθi(� − σmax)pi j [n�]r∗i j [n�]

+
∑

i∈U

∑

j∈N i [n�]
V (�−σmax)r∗i j [n�](σ j ci [n�]−log

ω j

n∗i [n�] )

−
∑

i∈U

(n+1)�−1∑

t=n�

∑

j∈Ni [t ]
V E{r∗i j [t]log

ω j

n∗i [t]
|�[n�]}

+
∑

i∈U

(n+1)�−1∑

t=n�

∑

j∈V

Qi [n�]E{a∗i j [t]|�[n�]}

−
∑

i∈U

∑

j∈Ni [n�]
Qi [n�](� − σmax)σ j r

∗
i j [n�]

−
∑

i∈U

∑

j∈Ni [n�]
Zi [n�](� − σmax)σ j r

∗
i j [n�] − Zi [n�]�εi

+
∑

i∈U

(n+1)�−1∑

t=n�

∑

j∈V

(Hi [n�] − θi )pi j [t]E{a∗i j [t]|�[n�]}
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−
∑

i∈U

∑

j∈Ni [n�]
Hi [n�]((�−σmax)

× σ j e
2 pi j [n�]r∗i j [n�]−(1−e)�θi)

Taking expectations of the above, summing resulting tele-
scoping series for n from 0 to η− 1, dividing by ηV � yields

E {L(�[η�])}
ηV �

− E {L(� [0])}
ηV �

− 1

η�

η−1∑

n=0

(n+1)�−1∑

t=n�

E{ f [t]}

≤ B1

V
+ (� − σmax)(� − σmax − 1)B3

2�V

+ (� − σmax)(� − σmax − 1)

2�

∑

i∈U

σmax Bi (c
max
i − cmin

i )

+ � − 1

2V

∑

i∈U

(ε2
i
+ (Amax)2

+ pmax(
(e − 1)Qmax

σmin + Amax)(θi (1− e)+ pmax Amax))

+ (σmax)2

�

∑

i∈U

Bi (c
max
i + logωmax + e pmaxθi

V
)

− 1

η�

η−1∑

n=0

(n+1)�−1∑

t=n�

E{
∑

i∈U

∑

j∈Ni [t ]
r∗i j [t]log

ω j

n∗i [t]
}+�−σmax

η�

·
η−1∑

n=0

E{
∑

i∈U

∑

j∈N i [n�]
r∗i j [n�](σ j ci [n�]−log

ω j

n∗i [n�] )}−
δ

ηV �

·
η−1∑

n=0

∑

i∈U

E{Qi [n�]}
(n+1)�−1∑

t=n�

∑

j∈V

E

{
a∗i j [t]

}
− δ

ηV

η−1∑

n=0

∑

i∈U

εi

·E{Zi [n�]}+ (e−1)θi

ηV

η−1∑

n=0

∑

i∈U

E{Hi [n�]}−�−σmax

ηV �

1−e2

1+δ

·
η−1∑

n=0

∑

i∈U

(E{Hi [n�]} − θi )
∑

j∈Ni [n�]
σ j pi j [n�]E{r∗i j [n�]}

Using the facts that lim
η→∞

1
η�

∑η−1
n=0

∑(n+1)�−1
t=n�

E{∑i∈U
∑

j∈Ni [t ] r
∗
i j [t]log ω j

n∗i [t ] } −
lim

η→∞
�−σmax

η�

∑η−1
n=0 E{∑i∈U

∑
j∈N i [n�] r∗i j [n�](σ j · ci [n�] −

log ω j
n∗i [n�])} ≥ f

(1+δ)�
�−σmax .Taking limits for both sides of the

above as η→∞, the theorem thus follows. �

APPENDIX J
PROOF OF THEOREM 6

Proof: Denote ep
i [t] = p̂i j [t] − pi j [t], and eX

i [t] =
X̂i [t] − Xi [t] for Qi [t], Zi [t], Hi[t]. Since |eQ

i [t]|, |eZ
i [t]|,|eH

i [t]| ≤ ξ Q , |e p
i [t]| = |eω

i [t]et−t j | ≤ ξωeDmax, and |ai [t] −
ri [t]−di[t]| ≤ Amax+ Biσ

max+dmax
i , |a′i [t]− r ′i [t]−d ′i [t]| ≤

pmax(Amax + eBi + edmax
i ), we have

E{L(�̂[t + 1])− L(�̂[t])− V f †[t]|�[t]}
≤ G∗ +

∑

i∈U

(ξ Q (εi + θi (1− e)+ Amax(1+ pmax))

+ Bi (2σmax + epmax)+ dmax
i (2+ epmax))

+ ξωeDmax(Amax(H max
i + ξ Q + θi )

+ (Biσ
max + dmax

i )(e2 H max
i + e2ξ Q + eθi ))

where G∗ is the minimum of E{L(�[t + 1])− L(�[t])−
V f [t]|�[t]}, a†

i j [t], n†
i [t], r†

i j [t], d†
i j [t] are actions taken based

on �̂[t]. This shows (20) will still hold with �[t] replaced by
�̂[t], and B1 replaced by B ′1 = B1+∑

i∈U (ξ Q(εi+θi (1−e)+
Amax(1+ pmax))+ Bi (2σmax + epmax)+ dmax

i (2+ epmax))+
ξωeDmax(Amax(H max

i + ξ Q + θi)+ (Biσ
max+dmax

i )(e2 H max
i +

e2ξ Q + eθi )). Thus, the rest of the proof follows similarly as
the proof of Theorem 5. �
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