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Fregata: Fast Private Inference with Unified Secure
Two-Party Protocols

Xuanang Yang, Jing Chen, Yuqing Li, Kun He, Xiaojie Huang, Zikuan Jiang, Hao Bai, and Ruiying Du

Abstract—Private Inference (PI) safeguards client and server
privacy when the client utilizes the server’s model to make predic-
tions. Existing PI solutions for Convolutional Neural Networks
(CNNs) employ distinct cryptographic primitives to customize
secure two-party protocols for linear and non-linear layers. This
requires data to be converted into a specific form to switch
between protocols, thus leading to a significant increase in
inference latency. In this paper, we present Fregata, a fast PI
scheme for CNNs by leveraging identical cryptographic primi-
tives to calculate both linear and nonlinear layers. Specifically,
our protocols utilize homomorphic encryption to obtain additive
secret shares of matrix products during the offline phase, followed
by lightweight multiplication and addition operations on these
shares in the latency-sensitive online phase. Benefiting from
uniformity, we accelerate inference from a holistic perspective
by decoupling certain procedures of our protocols and executing
them asynchronously. Moreover, to improve the efficiency of the
offline phase, we elaborate a homomorphic matrix multiplication
calculation method with reduced computation and communica-
tion complexity compared to existing approaches. Furthermore,
we minimize inference latency by employing graphics processing
units to parallelize the operations on the shares during the
online phase. Experimental evaluations on popular CNN models
such as SqueezeNet, ResNet, and DenseNet demonstrate that
Fregata reduces 35-45 times inference latency over the state-
of-the-art counterparts, accompanied by a 1.6-2.8 times decrease
in communication overhead. In terms of total runtime, Fregata
maintains a reduction of approximately 3 times.

Index Terms—Private inference, convolutional neural net-
works.

I. INTRODUCTION

CONVOLUTIONAL Neural Networks (CNNs) have ex-
hibited remarkable performance in various fields includ-

ing medical diagnosis [1] and facial recognition [2]. Many
cloud service providers, such as Amazon [3] and Alibaba [4],
monetize their trained CNN models by allowing clients to
query them for predictions [5]. However, plaintext prediction
raises privacy concerns, which have garnered widespread
attention [6]–[9]. For one thing, since clients’ data may
contain sensitive personal information, it should be kept secret
from the service provider [10]–[12]. For another, models are
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the property of the service provider who invests substantial
amounts of data and computing resources in training them,
and thus should be hidden from clients [13]–[15].

To address privacy concerns, Private Inference (PI) [16]–
[18] has been developed to safeguard clients’ data from the
service provider while ensuring that model parameters are kept
secret from clients during inference. In particular, PI based on
secure 2-Party Computation (2PC) has shown exceptional per-
formance in CNN inference [19], [20]. Typically, CNN makes
predictions by feeding input data to a pipeline of alternating
linear and nonlinear layers, and those PI solutions customize
2PC protocols for linear and nonlinear layers respectively
based on their characteristics. In linear layers, most of PI [19]–
[22] pack multiple plaintexts into a single Homomorphic
Encryption (HE) ciphertext and then perform linear function
calculations on the packed ciphertexts. In nonlinear layers,
recent works [20], [23], [24] utilize Garbled Circuits (GC) or
Oblivious Transfer (OT) to calculate the comparison operation
in a privacy-preserving way. High inference latency is a
major headache for PI, and many efforts have been devoted
to accelerating inference. Some solutions [23], [25] put HE
operations of linear layer protocols into the query-independent
offline phase to lighten online prediction. Another type of work
speeds up linear or nonlinear layer protocols by approximating
linear [24] or nonlinear [8], [10], [23] calculations of CNNs
to fit cryptographic primitives, reducing the model accuracy.

However, prior works accelerate linear and nonlinear layer
protocols separately since they are based on different crypto-
graphic primitives. Considering the alternation of linear and
nonlinear layers in CNNs, the data processed by the previous
layer protocol is required to be converted into a certain form
before it is fed into the next layer protocol, greatly slowing
down the inference. Even for the state-of-the-art PI scheme
Cheetah [20], predicting an image from the ImageNet dataset
with a ResNet50 model takes at least tens of seconds.

A natural question is whether it is feasible to use the same
cryptographic primitive for both linear and nonlinear layer pro-
tocols, in order to reduce conversion cost between these layers
and speed up inference from a holistic perspective. However,
it is a challenging work. On one hand, HE constitutes state-of-
the-art linear layer protocols, but it cannot efficiently conduct
the comparison operation of nonlinear layers. On the other
hand, GC and OT perform well in nonlinear layers, but their
communication overhead for linear functions (e.g., matrix
multiplication) is very high.

In this paper, we present Fregata, a fast PI scheme for CNNs
via unified 2PC protocols that employ the same cryptographic
primitives to calculate both linear and nonlinear layers. Specif-
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TABLE I
A HIGH-LEVEL COMPARISON OF PI. “NATIVE MODEL” INDICATES THAT THE PI DOES NOT MODIFY THE MODEL; “ONLINE” DESCRIBES THE

CRYPTOGRAPHIC PRIMITIVES UTILIZED IN THE ONLINE PHASE; “LINEAR” AND “NON-LINEAR” DEPICTS THE TECHNIQUES USED TO IMPLEMENT
PRIVACY-PRESERVING LINEAR AND NON-LINEAR CALCULATIONS RESPECTIVELY; ‘DATASET” MEANS THE LARGEST SCALE DATASET TESTED BY THE

SOLUTION. THE INVOLVED CRYPTOGRAPHIC TECHNIQUES INCLUDE ASS, GC, HE, AND OT.

Solution Native Model Online Linear Nonlinear Dataset

ENSEI [26] ! GC, HE HE GC CIFAR-10
FALCON [27] ! GC, HE HE GC CIFAR-10

Delphi [23] # ASS, GC ASS, HE GC CIFAR-100
CrypTFlow2 [25] ! ASS, OT ASS, HE/OT OT ImageNet

GALA [19] ! ASS, GC ASS,HE GC ImageNet
COINN [24] # GC, OT OT GC ImageNet
Cheetah [20] ! ASS,OT ASS, HE OT ImageNet

Fregata " ASS ASS, HE ASS, HE ImageNet

ically, both our linear and nonlinear layer protocols leverage
HE to derive Additive Secret Shares (ASS) of matrix products
in the offline phase, followed by lightweight multiplication
and addition operations on these shares in the online phase.
This stands in contrast to existing 2PC PI approaches that
use heavyweight OT or GC during latency-sensitive online
prediction. Remarkably, the uniformity of these protocols
liberates Fregata from the data format conversion tools like
ABY [28] that is widely utilized in PI based on 2PC.
Moreover, based on the uniformity, we speed up inference
from a holistic perspective by decoupling certain procedures
of linear and nonlinear layer protocols and executing them
asynchronously—a departure from the synchronous execution
in existing approaches.

Furthermore, we accelerate both the offline and online
phases in our protocols. In the offline phase, we propose a
homomorphic matrix encryption scheme that supports matrix
multiplication with lower computational and communication
complexity than Cheetah. It makes better use of ciphertext
space than Cheetah which pads too many zeros in the cipher-
texts. In the online phase, we employ Graphics Processing
Units (GPUs) to parallelize operations on shares, dramatically
reducing inference latency. Our protocols faithfully implement
the calculation without modification, thus retaining the model’s
original characteristics. Table I summarizes the features of
Fregata compared to others. To the best of our knowledge,
Fregata is the first PI that tailors linear and nonlinear layer
protocols utilizing identical cryptographic primitives and ac-
celerates inference from a holistic perspective.

Our main contributions are summarized as follows.

• For the first time, we propose Fregata, a fast private
inference scheme for CNNs featuring unified protocols.
The protocols utilize the same cryptographic primitive
for both linear and nonlinear layers, reducing conversion
costs between these layers and facilitating the accelera-
tion of inference from a holistic perspective.

• We propose a homomorphic matrix encryption scheme
that supports matrix multiplication with reduced compu-
tational and communication complexity than the state-of-
the-art algorithm to expedite the offline phase. Moreover,
we exploit GPUs to parallelize the operations of ASS in
the online phase, significantly reducing inference latency.

TABLE II
MAJOR NOTATIONS.

Notation Description

Mi,j
Element in the i-th row and
j-th column of a matrix M

⟨a⟩0, ⟨a⟩1 A pair of additive secret shares of a
⟨Mi,j⟩0, ⟨Mi,j⟩1 A pair of additive secret shares of Mi,j

â A plaintext polynomial
âi The i-th coefficient of â
[a] A RLWE ciphertext of â
N The capacity of HE ciphertext
◦ Matrix Hadamard product

• We implement Fregata and evaluate it using prevalent
models, such as ResNet50, on datasets of ImageNet scale.
The experimental results indicate that Fregata reduces
35 − 45× inference latency over the state-of-the-art
counterparts [20], coupled with a 1.6 − 2.8× reduction
in communication cost. Regarding total runtime, Fregata
remains a decrease of about 3×.

II. PRELIMINARIES

We introduce the prediction process of CNNs, cryptographic
primitives used in Fregata, and an abstraction of PI based on
2PC. Major notations we use are summarized in Table II.

A. Convolutional Neural Networks

CNNs make predictions by feeding input data into a pipeline
of layers [29]. The first layer is the input layer which receives
the input data, and its output is the input to the second layer.
Similarly, the output of layer i is the input of layer i+1. The
last layer is the output layer whose output is the prediction.

The layers within CNNs can be categorized into two fun-
damental types based on their computational characteristics:
linear and non-linear.

1) Linear Layers: Linear layers encompass the Fully Con-
nected (FC) layer, convolutional layer, and Batch Normaliza-
tion (BN) layer, which can be calculated by matrix multipli-
cation.

FC Layer. This layer takes as input a vector X and
calculates the matrix-vector product Y = W ·X as the output,
where W is the learnable parameter matrix.
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Convolutional Layer. Given a 3-dimension input matrix X ,
the convolutional layer calculates and outputs the convolution
of X and a set of learnable 3-dimension filters F , denoted
as Y = F ⊙X . By flattening X and F respectively into 2D
matrices X ′ and F ′, the convolution can be calculated by the
matrix multiplication Y = F ′ ·X ′ [30].

BN Layer. The BN layer performs linear transformations
on the FC or convolutional layer’s output to adjust it to
amenable ranges. During CNN prediction, the calculation of
the BN layer can be fused into the FC or convolutional layer
without affecting the prediction result [31]. That is to say, a
convolution layer and a BN layer behind it can be calculated
by a matrix multiplication.

2) Nonlinear Layers: Non-linear layers serve the function
of modeling the non-linear associations between input and
output, manifesting main features, and diminishing data di-
mensions. This category incorporates the activation layer and
max-pooling layer. The fundamental operation of both the
common activation layer (e.g., the rectified linear unit layer)
and the max-pooling layer is the comparison operation.

B. Cryptographic Primitives

1) ASS: With 2-out-of-2 ASS, we can generate a pair of
secrets (⟨a⟩0, ⟨a⟩1) for a value a and share them between
two participants, where a = ⟨a⟩0 + ⟨a⟩1. With only one of
the secrets, each participant cannot learn about a. Among the
cryptographic primitives used in PI such as HE, OT, and GC,
ASS is the lightest. Its computation cost is very close to that
in plaintext.

2) HE: HE enables the ciphertext of f(x) to be calculated
from the ciphertext of x without decryption [32], [33]. Our
solution utilizes the HE based on Ring Learning With Errors
(RLWE), which has proven prominent performance in PI [20].

RLWE-based HE operates on polynomials within the cy-
clotomic ring Z[x]/(xN + 1), where N is a power of 2. Two
crucial moduli are employed: the plaintext modulus p and the
ciphertext modulus q, where 0 < p ≪ q. The private key of
the scheme is a secret polynomial sk = ŝ ∈ Zq[x]/(x

N + 1).
The corresponding public key is generated by computing
pk = (r̂ · ŝ + ê, r̂), where r̂ ∈ Zq[x]/(x

N + 1) is a random
polynomial and ê ∈ Zq[x]/(x

N+1) is a noise polynomial with
coefficients sampled from a discrete Gaussian distribution of
standard deviation χσ . The encryption process transforms a
message â ∈ Zp[x]/(x

N+1) into a tuple of polynomials: [a] =
(⌊ qp â⌉+ ê1, 0)− r̂1 ·pk (mod q), where ê1 ∈ Zq[x]/(x

N +1)
is another noise polynomial with coefficients sampled from
χσ and r̂1 ∈ Zq[x]/(x

N + 1) is a random polynomial with
coefficients chosen uniformly from{0,±1}. This ciphertext
can then undergo various homomorphic operations that trans-
late to polynomial additions and multiplications within the
ciphertext domain. After computation, a RLWE ciphertext
(ĉ, b̂) is decrypted as: ⌊pq (ĉ+ b̂ · ŝ)⌉.

Below, we abstract the functions within RLWE-based HE
used in Fregata, where âi denotes the i-th coefficient of a poly-
nomial â. For the sake of clarity, the subsequent descriptions
assume that plaintext and ciphertext polynomials reside in the
rings Zp[x]/(x

N + 1) and Zq[x]/(x
N + 1), respectively.

• KeyGen. Given a security parameter λ, this key generation
algorithm outputs a pair of public-private keys (pk, sk)
and is denoted as (pk, sk)← KeyGen(1λ).

• Enc. This encryption algorithm takes as input a public
key pk and a plaintext â, and outputs a ciphertext [a],
denoted as [a]← Enc(pk, â).

• Dec. This decryption algorithm takes as input a private
key sk and a ciphertext [a], and outputs the plaintext â,
denoted as â← Dec(sk, [a]).

• Add. With the input of two ciphertexts [a] and [b], this
addition operation returns a ciphertext of â+ b̂, denoted
as [a+ b]← Add([a], [b]).

• Mul. With the input of a ciphertext [a] and a plaintext
b̂, this multiplication operation returns a ciphertext [v],
where v̂i = âi · b̂i, denoted as [a ◦ b]← Mul([a], b̂).

• PoMul. Given a plaintext â and a ciphertext [b], this
polynomial multiplication operation returns a ciphertext
of â · b̂, denoted as [a · b]← PoMul(â, [b]).

C. PI Based on 2PC

PI safeguards client data from the service provider and con-
ceals model parameters from the client when the client utilizes
the service provider’s model for predictions. PI based on 2PC
has demonstrated superior performance. These approaches
tailor protocols for linear and nonlinear layers utilizing appro-
priate cryptographic primitives, based on the characteristics
of individual layers. In each protocol, the client and server
additively share the input and output of the layer. So that they
can link the protocols sequentially to complete the inference.
The security guarantees of all the protocols ensure the overall
security of the entire privacy-preserving inference, as protocols
culminating in secure re-sharing of outputs are universally
composable [21].

III. OVERVIEW

In this section, we introduce the system model and describe
our scheme at a high level.

A. System Model

There are two types of entities in our system: server and
client. The server utilizes the CNN model to provide prediction
services to clients, and clients send their input to the server
and obtain the prediction results of CNN.

1) Threat Model: Consistent with prior works (e.g., CrypT-
Flow2 [25] and Cheetah [20]), we target a semi-honest threat
model, where both entities honestly abide by our protocol but
are curious about the other entity’s private data. Specifically,
the server attempts to learn the input value and prediction
result and the client is curious about model parameters.

2) Security Goals: We aim to keep the client’s input value
and prediction result secret from the server while guaranteeing
the server’s model parameters are hidden from the client
during inference. Our security definition follows the standard
ideal/real world paradigm, which requires an adversary cannot
distinguish its view in the real world from the ideal world.

As in prior works including CrypTFlow2 and Cheetah, our
ideal function does not protect model structures that can be
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Fig. 1. The flow of our scheme, where the gray and blue segments denote
the offline and online phases, respectively.

hidden by non-cryptographic techniques such as adding fake
layers [22]. Also, the cryptographic technique cannot prevent
attacks based purely on prediction results, such as model
stealing attacks [20]. Orthogonal techniques (e.g., differential
privacy [34], [35]) can be integrated into our solution to
provide a stronger privacy guarantee.

B. Our Solution at a High Level

In our system, the client and server execute our 2PC linear
and nonlinear layer protocols sequentially to complete the in-
ference in a privacy-preserving manner. Current PI approaches
adopt diverse cryptographic tools for linear and nonlinear layer
protocols. This practice introduces frequent invocations of data
format conversion tools like ABY and confines the accelera-
tion of inference to the improvement of the respective linear
and nonlinear layer protocols. In contrast, we craft unified
protocols employing consistent cryptographic primitives. This
approach not only eliminates the necessity for conversion tools
but also provides the opportunity to accelerate inference from
a holistic perspective. Benefiting from uniformity, we decouple
specific procedures of our linear and nonlinear layer protocols,
executing them asynchronously to expedite inference.

Each of our protocols is composed of an offline phase
and an online phase. The offline phase is independent of the
client’s input and executed before the client makes queries.
In this phase, the client and server collaboratively precompute
some data from the model parameters and their random data.
The online phase takes place when the client uploads data
to the server for prediction, and its runtime determines the
inference latency. Within this phase, the client and server
perform lightweight addition and multiplication on the client’s
input and pre-computed data to derive the prediction result.
Fig. 1 depicts the flow of our scheme.

IV. UNIFIED 2PC PROTOCOLS FOR CNN INFERENCE

We now detail our unified 2PC protocols for CNN inference.
Given that linear layers can be computed through matrix
multiplication, we devise a dedicated 2PC protocol specifi-
cally for matrix multiplication, elucidated in Section IV-A.
For nonlinear layers, wherein the fundamental operation is
comparison, we design a 2PC comparison protocol and ex-
plicate it in Section IV-B. In Section IV-C, we elaborate on

Client Server

� �

 � ∙ � 0  � ∙ � 1

Offline Secretly Share Matrix 
Multiplication � ∙ � by HE

Online Secretly Share Matrix 
Multiplication � ∙ � by ASS

 � 0, �,
   � ∙ � 0

 � 0

 � 1, �,
  � ∙ � 1

 � 1

Fig. 2. Modular description of the offline and online phases of the PMatMul
protocol.

expediting inference through the asynchronization of our linear
and nonlinear layer protocols.

All our protocols follow the HE-SS offline-online paradigm.
Specifically, the client and server utilize HE to additively share
matrix products in the offline phase. In the online phase,
they operate additions and multiplications on the shares to
additively share the output of the layer.

In the following, we denote a 2PC protocol Protocol

as {out0; out1} ← Protocol{in0; in1}, in which the client
(resp. server) takes as input in0 (resp. in1) and obtains out0
(resp. out1). An algorithm Algo that takes as input in and
outputs out is denoted as out ← Algo(in). We use pk and
sk to represent the public and private keys of the client.
Specifically, the client computes (pk, sk) ← KeyGen and
sends pk to the server when joining the prediction service.

A. Linear Layer Protocol
1) Design Goal: We design PMatMul, a 2PC matrix multi-

plication protocol for linear layers. Specifically, the client and
server additively share the n×k input matrix X , and the m×n
parameter matrix W is held by the server. After executing our
protocol, they additively share the m×k matrix multiplication
Y = W · X . Our protocol is denoted as {⟨Y ⟩0; ⟨Y ⟩1} ←
PMatMul{⟨X⟩0;W, ⟨X⟩1}, where X = ⟨X⟩0 + ⟨X⟩1 and
Y = ⟨Y ⟩0 + ⟨Y ⟩1.

Remarkably, we calculate the convolution through matrix
multiplication. Conventionally, convolution operations entail
sliding filters across an input feature map and calculating
the inner product between the filter and local patches of
the feature map. By representing the filters as rows of a
matrix W and the patches as columns of another matrix
X , convolution can be computed through W · X without
altering the computational complexity [30]. This approach
enables efficiency improvement through parallel acceleration,
albeit at the potential cost of increased memory usage. In
case the memory is not enough, we split the large matrices
into submatrices and add the multiplication of corresponding
submatrices to obtain the final result. This allows us to avoid
running out of memory while still benefiting from parallel
acceleration offered by matrix multiplication.

2) Protocol Flow: Fig. 2 is the modular description of the
PMatMul protocol. In the offline phase, the client generates an
n× k random matrix M and secretly shares W ·M with the
server through HE. In the online phase, the client and server
operate lightweight addition and multiplication on the shares
to additively share the output Y = W ·X .
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We now describe the offline phase. The client first encrypts
the matrix M and sends the ciphertext [M ] to the server,
who homomorphically calculates the matrix multiplication
[W · M ]. Then, the server generates an m × k random
matrix R and uses it to mask [W ·M ] by adding [W ·M ]
and [−R] homomorphically. The server sends [W ·M − R]
to the client and sets ⟨W · M⟩1 = R. Finally, the client
decrypts to obtain ⟨W · M⟩0 = W · M − R. It satisfies
⟨W ·M⟩0 + ⟨W ·M⟩1 = W ·M .

Then, we describe the online phase. The client computes
and sends ⟨X⟩0 −M to the server. The server then simply
calculates X −M = (⟨X⟩0 −M) + ⟨X⟩1 and ⟨Y ⟩1 = W ·
(X−M)+⟨W ·M⟩1. The client finally sets ⟨Y ⟩0 = ⟨W ·M⟩0.
It satisfies ⟨Y ⟩0+ ⟨Y ⟩1 = W ·X = Y . The online phase only
involves lightweight addition and multiplication on the shares.

3) Homomorphic Matrix Multiplication: A long line of
PI [16], [20]–[22], [36] focuses on the homomorphic matrix
multiplication methods, which can be applied in the offline
phase of PMatMul. Specifically, these methodologies craft
encoding techniques to encode multiple elements of the matrix
into a single ciphertext, and design algorithms to minimize
HE operations and ciphertext transmissions. The state-of-the-
art approach, Cheetah [20], encodes elements of two matrices
into two respective polynomials and calculates homomorphic
matrix multiplication through homomorphic polynomial mul-
tiplication. Nevertheless, this algorithm can only compute the
multiplication of a multidimensional and a one-dimensional
matrix through a single polynomial multiplication. Calculating
the multiplication of multidimensional matrices requires re-
peated applications of Cheetah, resulting in complexity scaling
linearly with the matrix dimension k. To overcome this limita-
tion and improve efficiency, we devise a Homomorphic Matrix
Encryption (HME) scheme that supports direct computation
of multidimensional matrix multiplication through a single
polynomial multiplication. HME leverages the ciphertext space
more efficiently by computing multiplications of matrices in
as many dimensions as possible within a single polynomial
multiplication, reducing the number of HE operations and
ciphertext transmissions compared to existing methods.

HME Construction. We utilize the RLWE-based HE to
construct our homomorphic matrix encryption scheme. It
consists of five algorithms: Gen, EncMat, DecMat, AddMat,
and MulMat. Fig. 3 depicts an example of using HME for
matrix multiplication, where m = 3, n = 2, k = 2, N = 16,
and p = 28.
Gen(1λ). The key generation algorithm Gen takes as input

a security parameter λ and outputs (pk, sk)← KeyGen(1λ).
EncMat(pk,M). Given a public key pk and an n × k

plaintext matrix M , the matrix encryption algorithm EncMat

encodes M into a polynomial M̂ , where M̂n·k−j·n−i−1 ≡
Mi,j mod p (0 ≤ i ≤ n− 1, 0 ≤ j ≤ k − 1), and sets other
coefficients of M̂ to 0. Finally, it outputs [M ]← Enc(pk, M̂).
DecMat(sk, [P ],m, n, k). The matrix decryption algorithm

DecMat takes as input a private key sk, a ciphertext polyno-
mial [P ], and three integer parameters m,n, k related to matrix
dimensions. It performs P̂ ← Dec(sk, [P ]) and outputs a
matrix Y , where Yi,j = P̂i·n·k−j·n+k·n−1 (0 ≤ i ≤ m−1, 0 ≤
j ≤ k − 1).

[�] ←  MulMat ([M], W, 2)

[�] ←  EncMat (pk, M)

� =  
1 2
3 4
5 6

 � = 1�0 + 2�1 + 3�4 + 4�5 + 5�8 + 6�9 mod (�16 + 1, 28)
Encode

10�0 + 28�1 + 25�2 + 25�3 + 44�4 + 64�5 + 59�6 + 57�7 +

78�8 + 100�9 + 103�10 + 89�11 + 42�12 mod (�16 + 1, 28)
[� ∙ �] =

[�] ←  DecMat (sk, [P], 3, 2, 2)

Output [�] = [� ∙ �]

� =  7 8
9 10 � =10�0 + 8�1 + 9�2 + 7�3 mod (�16 + 1, 28)

Encode

Output [�] ←  Enc (pk, �)

� ←  Dec (sk, [P])

� =  
25 28
57 64
89 100

  mod 28 ≡ � ∙ � mod 28�
Encode

Output  �

Fig. 3. An example of using HME for matrix multiplication, where the box
on “10x0 +28x1 + ...+42x12” represents the ciphertext of the polynomial
“10x0 + 28x1 + ...+ 42x12”.

AddMat(pk, [P ], R). With the input of a public key pk,
a ciphertext polynomial [P ], and an m × k plaintext ma-
trix R, the matrix addition algorithm AddMat first encodes
R into a polynomial R̂ of the same degree as P̂ , where
R̂i·n·k−j·n+k·n−1 ≡ Ri,j mod p (0 ≤ i ≤ m − 1, 0 ≤
j ≤ k − 1), and set other coefficients of R̂ to random
values. Then, it encrypts [R]← Enc(pk, R̂). Finally, it outputs
[P +R]← Add([P ], [R]).
MulMat([M ],W, k). The matrix multiplication algorithm

MulMat takes as input a ciphertext polynomial [M ], an m×n
plaintext matrix W , and an integer parameter k related to the
matrix dimension. It encodes W into a polynomial Ŵ , where
Ŵi·n·k+j ≡ Wi,j mod p (0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1),
and sets other coefficients of Ŵ to 0. Finally, it outputs
[P ]← PoMul(Ŵ , [M ]).

Principle of HME. HME implements matrix multiplication
by encoding matrix elements into polynomials and performing
polynomial multiplication homomorphically. In this process,
matrix multiplication W · M is achieved by computing the
inner product of each row of W and each column of M .
To compute the inner product, HME encodes a row of W
and a column of M into continuous coefficients of two
respective polynomials. It then calculates the product of
these polynomials and extracts the inner product from the
middle coefficient of the resulting polynomial. To calculate
multiple inner products through a polynomial multiplication,
HME encodes different rows of W into different segments
of polynomial coefficients, ensuring sufficient degree space
in each segment for inner product computation. We give the
homomorphic proof of HME in the Appendix.

Complexity Comparison. Table III shows the computation
and communication complexity comparison of our HME and
other methods. Perm denotes the homomorphic operation that
can permute elements in a packed ciphertext. Its computational
overhead is much higher than Add and Mul, and we suc-
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TABLE III
COMPLEXITY COMPARISON OF HOMOMORPHIC MATRIX MULTIPLICATION CALCULATION METHODS.

Method Add Mul Perm Communication

Gazelle log(⌈N
m
⌉) · k + ⌈m·n

N
⌉ · k ⌈m·n

N
⌉ · k log(⌈N

m
⌉) · k + ⌈m·n

N
⌉ · k − k ⌈m

N
⌉ · k

Cheetah ⌈m·n
N

⌉ · k ⌈m·n
N

⌉ · k 0 ⌈m·n
N

⌉ · k
Fregata ⌈m·n·k

N
⌉ ⌈m·n·k

N
⌉ 0 ⌈m·n·k

N
⌉

Protocol 1 PMatMul

Input: The client inputs an n × k matrix ⟨X⟩0. The server
inputs an m× n matrix W and an n× k matrix ⟨X⟩1.

Output: The client and server outputs matrices ⟨Y ⟩0 and
⟨Y ⟩1 of dimensions m× k respectively.

Offline phase:
1: The client generates an n × k random matrix M and

computes [M ]← EncMat(pk,M). Then, the client sends
[M ] to the server.

2: The server generates a m× k random matrix R and sets
⟨W ·M⟩1 = R. Then, the server calculates [W ·M−R]←
AddMat(pk, MulMat([M ],W, k),−R) and sends it to the
client.

3: The client decrypts to get ⟨W ·M⟩0 ← DecMat(sk, [W ·
M −R],m, n, k).

Online phase:
1: The client computes and sends V = ⟨X⟩0 − M to the

server and sets ⟨Y ⟩0 = ⟨W ·M⟩0.
2: The server calculates X −M = V + ⟨X⟩1 and ⟨Y ⟩1 =

W · (X −M) + ⟨W ·M⟩1.

cessfully avoid it. Compared with Cheetah, our computation
and communication complexity ⌈m·n·k

N ⌉ is usually lower than
⌈m·n

N ⌉ ·k in practice since the ciphertext capacity N is greater
than m · n in most cases of PI. Similarly, our communication
complexity is typically not higher than that of Gazelle. This
is because our algorithm makes better use of ciphertext space.

We utilize HME to construct the offline phase of our
PMatMul protocol, and the entire flow of PMatMul is described
in Protocol 1.

B. Nonlinear Layer Protocol

1) Design Goal: The fundamental operation of nonlinear
layers is identifying the maximum value. Toward this, we
devise a 2PC protocol that can compare the max value in a
privacy-preserving way.

In the protocol, the client and server start by additively
sharing input m × k matrices E and F . After executing
the protocol, they obtain ⟨Y ⟩0 and ⟨Y ⟩1 respectively, where
⟨Yi,j⟩b = max(⟨Ei,j⟩b, ⟨Fi,j⟩b) (i ∈ [0,m− 1], j ∈ [0, k − 1],
and b ∈ [0, 1]). Our 2PC comparison protocol is denoted as
{⟨Y ⟩0; ⟨Y ⟩1} ← PMax{⟨E⟩0, ⟨F ⟩0; ⟨E⟩1, ⟨F ⟩1}. Notably, to
improve efficiency, PMax parallelize the element-wise com-
parison between E and F by packing multiple elements into
a single ciphertext in the offline phase and employ GPU in
the online phase.

Client Server

� �

 � ∘ � 0  � ∘ � 1

Offline Secretly Share Matrix 
Hadamard Product � ∘ � by HE

Online Secretly Share and 
Recover � ∘ (� − �) by ASS

 � 0,  � 0, �,
 � ∘ � 0

�

 � 1,  � 1, �,
 � ∘ � 1

�

Fig. 4. Modular description of the offline and online phases of the PMax
protocol.

Many prior works [8], [20]–[23], [25] make efforts to lessen
the computation and communication cost of the comparison
protocol. However, they either involve expensive cryptographic
primitives such as GC and OT in their latency-sensitive online
prediction or adopt approximation that reduces the model ac-
curacy. In contrast, our protocol only utilizes the lightest ASS
in the online phase and faithfully implements the comparison
without approximation.

2) Protocol Flow: The PMax protocol also follows the HE-
SS offline-online paradigm. The details of PMax are shown
in Fig. 4. Specifically, the client and server first additively
share E − F by calculating ⟨E − F ⟩0 = ⟨E⟩0 − ⟨F ⟩0
and ⟨E − F ⟩1 = ⟨E⟩1 − ⟨F ⟩1, respectively. Then, the
server generates a random matrix T of dimensions m × k,
where each element is a positive value. And then, the client
interacts with the server to additively share T ◦ (E − F ).
This procedure is similar to the mechanism of sharing W ·X
within the PMatMul protocol, and the sole distinction lies in
homomorphically calculating matrix Hadamard product rather
than matrix multiplication during the offline phase. Finally, the
client and server ascertain shares of the max value through the
Hadamard product. Protocol 2 details the PMax protocol, where
the mod p operation is omitted in encoding matrix elements
into polynomial coefficients for clarity.

C. Asynchronization of Linear and Nonlinear Layer Protocols
The disparity of linear and nonlinear layer protocols within

existing PI schemes necessitates the conversion of the output
from the former protocol to a specific format before feeding
it into the subsequent protocol. This approach introduces
conversion cost and mandates the synchronous execution of
protocols. PMatMul and PMax bridge the gap by elaborating
both in the HE-SS offline-online paradigm, eliminating the
need for conversion tools. To further expedite inference, we
execute certain procedures of PMatMul and PMax in asyn-
chronous modalities. Specifically, specific procedures of PMax
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Protocol 2 PMax

Input: The client inputs matrices ⟨E⟩0 and ⟨F ⟩0 of dimen-
sions m× k. The server inputs two m× k matrices ⟨E⟩1
and ⟨F ⟩1.

Output: The client and server output ⟨Y ⟩0 and ⟨Y ⟩1 of
dimensions m× k respectively.

Offline phase:
1: The client generates an m × k random matrix M

′
and

encodes it into a polynomial M̂ ′ in raster scan fashion.
Then, the client computes [M

′
]← Enc(pk, M̂ ′) and sends

it to the server.
2: The server generates two m × k random matrices R

′

and T , where all elements of T are positive. Then,
the server encodes them into polynomials R̂′ and T̂ in
raster scan fashion respectively. And then, the server
calculates [−R′

] ← Enc(pk,−R̂′) and [T ◦M ′ − R
′
] ←

Add(Mul([M
′
], T̂ ), [−R′

]). Finally, the server sends [T ◦
M

′ −R
′
] to the client and sets ⟨T ◦M ′⟩1 = R

′
.

3: The client decrypts to get T̂ ◦ M̂ ′ − R̂′ ← Dec(sk, [T ◦
M

′ −R
′
]) and encodes coefficients of T̂ ◦ M̂ ′ − R̂′ into

an m× k matrix ⟨T ◦M ′⟩0 in raster scan fashion.
Online phase:

1: The client computes ⟨E − F ⟩0 = ⟨E⟩0 − ⟨F ⟩0 and sends
V

′
= ⟨E − F ⟩0 −M

′
to the server.

2: The server calculates E − F −M
′
= ⟨E⟩1 − ⟨F ⟩1 + V

′

and U = T ◦ (E −F −M
′
) + ⟨T ◦M ′⟩1, and then sends

U to the client.
3: The client computes T ◦ (E − F ) = U + ⟨T ◦M ′⟩0 and

transmits an m× k matrix G to the server, wherein Gi,j

is a randomly generated positive value if (T ◦ (E−F ))i,j
is positive, and a non-positive random value otherwise.

4: The client and server outputs ⟨Y ⟩b (b ∈ {0, 1}) respec-
tively, where ⟨Yi,j⟩b = ⟨Ei,j⟩b if Gi,j is positive and
⟨Yi,j⟩b = ⟨Fi,j⟩b otherwise.

can proceed without waiting for the data of the PMatMul

protocol, enabling simultaneous execution of specific proce-
dures of PMatMul and PMax. For instance, the client can
encrypt M ′ while transmitting [M ]. The comparison between
synchronous and asynchronous execution of PMatMul and
PMax is illustrated in Fig. 5. Notably, the upper and lower
portions of Fig. 5a depict the processes of the PMatMul and
PMax protocols, respectively.

V. SECURITY ANALYSIS

We now prove the security of the PMatMul and PMax

protocols proposed in Section IV.

A. Security of PMatMul Protocol

The security of the PMatMul protocol can be reduced to the
security of the matrix multiplication in the offline phase as
shown in Theorem 1. We define the ideal matrix multiplication
functionality as {⟨W · M⟩0; ⟨W · M⟩1} ← IMMul{M ;W},
where ⟨W ·M⟩0 + ⟨W ·M⟩1 = W ·M .

Input � 0, �, �’  � 1,�, �

[�]

�

�

[�’]

�’

�’

Compute � 

�

Compute � 

�

Encrypt [�]

Decrypt �

Compute  � ∙ � 1

Encrypt [�’]

Compute �

Compute �’

Output  � 0 

Output  � 1 

Sync.
Client Server

Compute �

Compute �’

Decrypt �’

(a) Synchronization.

Compute  � ∙ � 1

Client Server

[�]

�

[�’]

�’

Compute � 

Compute � 

�

Encrypt [�]

Compute  � ∙ � 1

Encrypt [�’]

Compute �

Compute �’

Output  � 0 

Output  � 1 

�

�’

�

Input � 0, �, �’  � 1,�, �

ASyn.

Decrypt �

Decrypt �’

Compute �

Compute �’

(b) Asynchronization.

Fig. 5. The comparison between synchronous and asynchronous execution
of PMatMul and PMax, with the gray and blue segments denoting the offline
and online phases, respectively. The upper and lower portions of subfigure (a)
describe the flows of the PMatMul and PMax protocols, respectively.

Theorem 1. The offline phase of the PMatMul protocol imple-
ments IMMul in the presence of semi-honest adversaries if the
underlying RLWE-based HE scheme is semantically secure.

Proof: We first prove the security against a semi-honest
server. The server’s view in an execution of PMatMul’s of-
fline phase π is viewπ

0 (W,M) = {W, rS , [M ]}, where W
is the server’s input, rS is the server’s randomness, and
[M ] is the received message. We construct the simulator
Sim0(W, IMMul{M ;W}) as follows. (1) Choose a random
tape r∗S . (2) Initialize a matrix M∗ of the same size as M
and choose each element in the matrix according to the dis-
tribution. (3) Compute [M∗] ← EncMat(pk,M∗). (4) Output
(W, r∗S , [M

∗]). If the RLWE-based HE is semantically secure,
we can prove that {Sim0(W, IMMul{M ;W})}W,M∈{0,1}∗

c≡
{viewπ

0 (W,M)}W,M∈{0,1}∗ by a hybrid argument and com-
plete the proof against a semi-honest server.

We next prove the security against a semi-honest client.
The view of the client in an execution of PMatMul’s of-
fline phase is viewπ

1 (W,M) = {M, rC , [W · M − R]},
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where M is the client’s input, rC is the client’s randomness,
and [W · M − R] is the received message. The simula-
tor Sim1(M, IMMul{M ;W}) is constructed as follows. (1)
Choose a random tape r∗C . (2) Initialize matrix W ∗ of the same
size as W and R∗ of the same size as R and choose each ele-
ment in the vectors according to the distribution. (3) Compute
[W ∗ ·M−R∗] from W ∗, M , and R∗. (4) Output (M, r∗C , [W

∗ ·
M − R∗]). If the RLWE-based HE is semantically secure,
we can prove that {Sim1(M, IMMul{M ;W})}W,M∈{0,1}∗

c≡
{viewπ

1 (W,M)}W,M∈{0,1}∗ by a hybrid argument and com-
plete the proof against semi-honest the client.

B. Security of PMax Protocol

The security of the PMax protocol can be reduced to
the security of the matrix Hadamard product in the offline
phase as shown in Theorem 2. We define the ideal matrix
Hadamard product functionality as {⟨T ◦M⟩0; ⟨T ◦M⟩1} ←
IMHP{M ;T}, where ⟨T ◦M⟩0 + ⟨T ◦M⟩1 = T ◦M .

Theorem 2. The offline phase of the PMax protocol imple-
ments IMHP in the presence of semi-honest adversaries if the
underlying RLWE-based HE scheme is semantically secure.

Proof: We first prove the security against a semi-honest
server. The server’s view in an execution of PMax’s offline
phase π is viewπ

0 (T,M
′) = {T, rS , [M ′]}, where T is the

server’s input, rS is the server’s randomness, and [M ′] is the
received message. The simulator Sim0(T, IMHP{M ′;T}) is
constructed as follows. (1) Choose a random tape r∗S . (2)
Initialize a matrix M∗ of the same size as M ′ and choose
each element in the matrix according to the distribution. (3)
Encode M∗ into a polynomial M̂∗ in raster scan fashion and
compute [M∗] ← Enc(pk, M̂∗). (4) Output (T, r∗S , [M

∗]).
Since the RLWE-based HE is semantically secure, we
can prove that {Sim0(T, IMHP{M ′;T})}T,M ′∈{0,1}∗

c≡
{viewπ

0 (T,M
′)}M ′∈{0,1}∗ by a hybrid argument and complete

the proof against a semi-honest server.
In the following, we prove the security against a semi-

honest client. The view of the client in an execution of PMax’s
offline phase is viewπ

1 (T,M
′) = {M ′, rC , [T ◦ M ′ − R′]},

where M ′ is the client’s input, rC is the client’s randomness,
and [T ◦ M ′ − R′] is the received message. The simula-
tor Sim1(M

′, IMHP{M ′;T}) is constructed as follows. (1)
Choose a random tape r∗C . (2) Initialize vectors T ∗ and R∗

of the same size as T and R′, and choose each element
in the vectors according to the distribution. (3) Compute
[T ∗◦M ′−R∗] from T ∗, M ′ and R∗. (4) Output (M ′, r∗C , [T

∗◦
M ′−R∗]). Since the RLWE-based HE is semantically secure,
we can prove that {Sim1(M

′, IMHP{M ′;T})}T,M ′∈{0,1}∗
c≡

{viewπ
1 (T,M

′)}T,M ′∈{0,1}∗ by a hybrid argument and com-
plete the proof against a semi-honest the client.

VI. EVALUATION

We conduct experiments on Fregata and compare it with
state-of-the-art PI frameworks.

A. Evaluation Setup

Implementation. We implement Fregata on top of the
SEAL library [37]. We set the SEAL parameters consistent
with Cheetah: N = 4096, q ≈ 2102, p = 237, σ = 3.2,
where σ signifies the standard deviation of discrete Gaussian
distribution.

The online phases of both PMatMul and PMax involve
only elementary operations: addition and multiplication of
additive secret shares. The inherent simplicity of these oper-
ations makes them highly amenable to GPU acceleration. To
reduce inference latency, we utilize GPUs to parallelize these
operations, programming them in CUDA C++. Specifically,
we craft kernel functions to transform the originally serial
loops for matrix multiplication and addition of secret shares
into parallel operations executable on the GPU. Considering
that CUDA C++ does not natively support modular arithmetic,
we set an integer type value as the modulus and perform
modular operations after multiplication or addition, which
is also written in kernel functions for parallel execution.
This approach significantly improves performance compared
to serial execution on the CPU. Furthermore, we optimize
memory management and kernel launches by meticulously
selecting grid and block sizes, ensuring efficient workload
distribution across the GPU.

Baselines. To compare with state-of-the-art PI solutions, we
use the source code of Gazelle [22], CrypTFlow2 [25], and
Cheetah [20], and reimplement GALA [19] based on Gazelle.
For fairness, all solutions use the same version of SEAL and
apply HEXL acceleration.

Testbed Environment. We run the client-side program on a
desktop (Intel Core i7 CPU with 6 3.19 GHz cores and 15.8GB
memory) and the server-side program on a server (Intel Xeon
with 14 2.40 GHz cores, 128GB memory, and NVIDIA 4090
GPU). Both machines use Ubuntu 18.04 and run on a LAN
network with a bandwidth of 460 MBps.

Datasets and CNN Architectures. We conduct a com-
parative analysis with other counterparts across a diverse
set of CNN architectures, encompassing SqueezeNet, ResNet
(characterized by over 23 million parameters), and DenseNet.
This evaluation spans classical datasets such as CIFAR and
ImageNet.

B. Microbenchmarks

1) Evaluation on Matrix Multiplications: To validate the ef-
fectiveness of HME, we conduct a comparative evaluation with
prevalent methods across three matrix multiplications with
the following dimensions (m,n, k): (64, 32, 32), (16, 64, 64),
(32, 32, 128).

Table IV details the computation and communication com-
plexity of these methods. Fregata avoids the most expensive
Perm operation. Additionally, it incurs fewer HE addition and
multiplication, and reduces ciphertext transmission compared
to existing methods. This enhancement stems from our HME,
which maximizes the utilization of ciphertext space.

The comparison of practical runtime and communication
overhead is illustrated in Fig. 6a and Fig. 6b respectively,
where CTF(OT) represents an advanced matrix multiplication
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TABLE IV
COMPUTATION AND COMMUNICATION COMPLEXITY COMPARISON OF

MATRIX MULTIPLICATION.

MM1: (m× n× k):(64× 32× 32)
Method Add Mul Perm Communication

Gazelle 224 32 192 32
Cheetah 32 32 0 32
Fregata 16 16 0 16

MM2: (m× n× k):(16× 64× 64)
Method Add Mul Perm Communication

Gazelle 576 64 512 64
Cheetah 64 64 0 64
Fregata 16 16 0 16

MM3: (m× n× k):(32× 32× 128)
Method Add Mul Perm Communication

Gazelle 1024 128 896 128
Cheetah 128 128 0 128
Fregata 32 32 0 32
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Fig. 6. Performance comparison of matrix multiplication.

TABLE V
PERFORMANCE COMPARISON OF FC LAYERS.

Protocol Runtime(ms) Communication(KB)

Online Offline Total Online Offline Total

FC1
Fregata 0.02 0.33 0.35 0.1 11.4 11.6
Cheetah 0.1 0.31 0.41 0.1 11.4 11.6

CrypTFlow2 0.11 1.06 1.17 0.1 51.7 51.8

FC2
Fregata 0.07 0.58 0.65 0.5 22.9 23.4
Cheetah 0.47 0.67 1.14 0.5 22.9 23.4

CrypTFlow2 0.46 3.93 4.39 0.5 103.5 103.9

FC3
Fregata 0.92 6.58 7.51 7.8 366.1 373.9
Cheetah 4.64 6.65 11.29 7.8 366.1 373.9

CrypTFlow2 4.58 58.37 62.95 7.8 1655.2 1663.1

calculation method based on OT [25]. Fregata demonstrates an
approximate 2−4× enhancement over Cheetah, coupled with
a reduction in communication cost by 2− 4×, attributable to
the superior utilization of ciphertext space.

2) Evaluation on Linear Layers: We evaluate the perfor-
mance of our PMatMul protocol against the linear protocols
within CrypTFlow2 and Cheetah on both FC and convolu-

TABLE VI
PERFORMANCE COMPARISON OF CONVOLUTIONAL LAYERS.

Protocol Runtime(ms) Communication(MB)

Online Offline Total Online Offline Total

Conv1
Fregata 1.2 7.3 8.5 0.02 0.55 0.57
Cheetah 8.9 13.7 22.6 0.02 0.73 0.75

CrypTFlow2 8.8 96.1 104.9 0.02 3.31 3.33

Conv2
Fregata 13.8 21.7 35.5 0.13 1.46 1.59
Cheetah 69.5 105.7 175.2 0.13 5.86 5.98

CrypTFlow2 70.7 873.8 944.5 0.13 26.48 26.61

Conv3
Fregata 289.4 694.5 983.9 4.02 46.86 50.87
Cheetah 2231.8 3271.6 5503.4 4.02 187.43 191.45

CrypTFlow2 2243.1 27169.4 29412.5 4.02 847.46 851.48

TABLE VII
PERFORMANCE COMPARISON OF ACTIVATION LAYERS.

Network Protocol Runtime(S) Communication(GB)

Online Offline Total Online Offline Total

SqueezeNet
Fregata 0.1 1.3 1.4 0.05 0.12 0.17
Cheetah 17.9 0 17.9 0.13 0 0.13

CrypTFlow2 18.8 0 18.8 2.22 0 2.22

ResNet50
Fregata 0.3 7.2 7.5 0.19 0.57 0.76
Cheetah 71.8 0 71.8 0.59 0 0.59

CrypTFlow2 80.4 0 80.4 9.66 0 9.66

DenseNet121
Fregata 0.5 14.6 15.1 0.28 1.00 1.28
Cheetah 126.2 0 126.2 0.99 0 0.99

CrypTFlow2 134.9 0 134.9 16.18 0 16.18

tional layers. For FC layers, we used parameter matrices of
dimensions 128×16, 64×128, and 1024×128, referred to as
FC1 to FC3. For convolutional layers, the input feature maps’
dimensions, filter counts, filter sizes, and stride lengths are set
to (16×16×32, 32, 1×1, 1), (32×32×64, 32, 5×5, 2), and
(64×64×128, 128, 3×3, 2), denoted as Conv1 to Conv3. Since
Cheetah’s and CrypTFlow2’s linear protocols can be extended
to the online-offline paradigm like PMatMul, we compare the
online-offline versions of these protocols for a fair comparison.

The detailed performance comparisons for FC and con-
volutional layers are presented in Table V and Table VI,
respectively. Fregata achieves significant latency reductions
(4.5 − 7.7×) compared to Cheetah in the online phase due
to efficient GPU parallelization. During the offline phase,
Fregata exhibits comparable runtime and communication costs
to Cheetah for FC layers due to their shared underlying
complexity. However, for convolutional layers, Fregata demon-
strates substantial improvements in both runtime (1.9− 4.9×)
and communication cost (1.3−4×) compared to Cheetah. This
stems from the superior ciphertext space utilization offered
by HME. This benefit is particularly pronounced in strided
convolutions, where Cheetah’s packing method has to calculate
unnecessary inner products, whereas HME only computes the
essential ones through matrix multiplication.

3) Evaluation on Nonlinear Layers: To validate the perfor-
mance of the PMax protocol, we evaluate it and the comparison
protocols within CrypTFlow2 and Cheetah in terms of runtime
and communication overhead. Specifically, we invoke these
protocols to calculate ReLU and max-pooling layers within
the architectures of SqueezeNet, ResNet50, and DenseNet121.
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TABLE VIII
PERFORMANCE COMPARISON OF MAX-POOLING LAYERS.

Network Protocol Runtime(S) Communication(GB)

Online Offline Total Online Offline Total

SqueezeNet
Fregata 0.1 1.7 1.8 0.05 0.18 0.23
Cheetah 14.7 0 14.7 0.17 0 0.17

CrypTFlow2 21.8 0 21.8 2.94 0 2.94

ResNet50
Fregata 0.1 1.1 1.2 0.02 0.12 0.14
Cheetah 7.4 0 7.4 0.1 0 0.1

CrypTFlow2 13.7 0 13.7 1.74 0 1.74

DenseNet121
Fregata 0.1 1.0 1.1 0.02 0.11 0.13
Cheetah 7.8 0 7.8 0.1 0 0.1

CrypTFlow2 13.8 0 13.8 1.74 0 1.74
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Fig. 7. Performance comparison of linear and nonlinear layers. CTF2 refers
to CrypTFlow2 [25].

The performance comparison of activation layers are sum-
marized in Table VII. In the online phase, Fregata is 179 −
266× faster than Cheetah, since it only involves lightweight
addition and multiplication of ASS and we adopt GPU to
paralellize such operations. Regarding total runtime (offline
+ online), Fregata remains 8− 13× faster. Although our total
communication cost is slightly exceeds that of Cheetah, our
communication overhead is 2.6 − 3.5× smaller during the
resource-sensitive online phase.

Table VIII presents the performance comparison of max-
pooling layers. Fregata is 74 − 147× faster than Cheetah,
accompanied with communication cost reduced by 4 − 7×,
owing to its reliance on lightweight ASS and the utilization
of GPU. As for total runtime, Fregata achieves a speedup of
6.2− 8.2× over Cheetah.

4) Evaluation on Linear and Nonlinear Layers: We pro-
pose an asynchronous computation scheme to expedite the
inference. To demonstrate its efficacy, we conduct evalua-
tions on connected linear and activation layers, comparing it
with CrpyTFlow2, Cheetah, and synchronous executions of
PMatMul and PMax. For ease of representation, we refer to
synchronous and asynchronous execution as PSyn and PAsy,
respectively. The matrix dimensions in linear layers (from BC1
to BC3) are set as follows: (1024, 128, 4096), (512, 256, 4096),

and (512, 128, 2048).
Fig. 7a and Fig. 7b provide a visual representation of

online runtime and total runtime. PAsy exhibits significant
performance advantages over Cheetah. In the online phase,
PAsy achieves a remarkable speedup, ranging from 36− 50×
faster compared to Cheetah. This improvement extends to
the total runtime, where PAsy is 2.5× faster. In comparison
to PSyn, our asynchronous computation scheme introduces
enhancements. Specifically, we observe a 1.3× speedup in
online runtime and a 1.3 − 1.4× speedup in total runtime.
These advancements stem from our strategy to decouple
specific procedures of PMatMul and PMax, executing them
asynchronously.

C. End-to-end Inference Evaluation

1) Evaluation on CIFAR-10 Dataset: The CIFAR-10 serves
as a widely recognized dataset in the field of computer vision.
In the CIFAR-10 challenge, images are presented with three
channels to denote color, and the primary objective is to
classify these images into 10 distinct classes. These classes
encompass a variety of entities, including but not limited to
ships, birds, frogs, trucks, and more.

We execute Gazelle, CrypTFlow2, CTF2(OT), GALA, and
Fregata on ResNet18, ResNet50, and ResNet101, specifically
for CIFAR-10 tasks. Fig. 8 delineate the online and total
runtime, along with associated communication cost. During
the latency-sensitive online phase, Fregata demonstrates a
remarkable 34 − 64× acceleration compared to CTF(OT),
accompanied by a 6.8 − 11.9× reduction in communication
cost over GALA. Moreover, in comparison to GALA, Fregata
sustains a 3.4 − 3.9× acceleration in terms of total runtime
and achieves an overall communication cost improvement
of 2.6 − 4.1×. This performance improvement is attributed
to the efficacy of our unified protocols and asynchronous
computation scheme.

Fregata refrains from approximation in CNN inference, and
the only possible accuracy diminution stems solely from the
substitution of floating-point numbers with fixed-point num-
bers—a necessary procedure in PI schemes. This inevitable
substitution has been extensively explored in prior works [19],
[20], [25], consistently affirming the insignificance of the
incurred loss. To substantiate this claim, we compare the
accuracy of Fregata against Gazelle, CrypTFlow2, CTF2(OT),
GALA, and the plaintext model. The results in Fig. 9 prove
that the accuracy of these PI frameworks are very close, with
negligible accuracy loss.

2) Evaluation on ImageNet Dataset: ImageNet is also a
popular dataset in the realm of image classification tasks,
which is much more complex than the CIFAR-10 dataset. In
the ImageNet challenge, images are categorized into thousands
of classes, spanning a spectrum from animals and natural
landscapes to artificial structures and abstract concepts. No-
tably, the resolution of ImageNet images is usually higher than
that of cifar, necessitating more computations in the model
prediction process.

Fig. 10 shows the end-to-end comparison of CrypT-
Flow2, Cheetah, and Fregata on SqueezeNet, ResNet50, and
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Fig. 8. Performance comparison of CIFAR-10 dataset. CTF2 refers to CrypTFlow2 [25].
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DenseNet121 for ImageNet tasks. Compared to Cheetah, Fre-
gata exhibits a remarkable speed improvement of 35 − 45×
in the online phase, significantly reducing inference latency.
Simultaneously, it achieves a communication cost reduction
of 1.6 − 2.8×. Regarding total runtime and communication
cost, Fregata maintains a speed advantage of 3× and a
communication cost improvement of 1.1×. This owes to the
efficiency of our unified protocols and our holistic approach
to accelerating inference. Significantly, the prediction latency
is determined by the runtime of online phase.

VII. RELATED WORK

According to the cryptographic primitives employed, we
categorize PI for CNNs into three types: PI based on HE,
PI based on GC, and PI based on 2PC.

PI Based on HE. In this category [10], [16], [38],
[39], clients transmit HE-encrypted data to the server who
performs inference homomorphically. To improve efficiency,
E2DM [36] elaborate a packing algorithm, minimizing HE
operations in linear calculations. Despite this optimization, it
suffers from notable inference latency, since it has to invoke

the heavy bootstrapping operation to alleviate the ciphertext
noise that accumulates with HE operations. Moreover, consid-
ering the inefficiency of HE in computing nonlinear functions,
this category approximates them with low-degree polynomials.
This approach compromises model accuracy and necessitates
an additional retraining process to mitigate the decline.

PI Based on GC. GC is one of the generic secure two-party
computation protocols, which is utilized by DeepSecure [40] to
implement secure two-party inference. To enhance efficiency,
XONN [11] binarizes the CNN and employs lightweight
circuit operations to complete the inference of binarized CNN.
However, this methodology diminishes model accuracy. More-
over, this type of PI incurs a large communication overhead
since the communication of GC’s each binary gate scales
linearly with the security parameter.

PI Based on 2PC. To address the challenges posed by the
aforementioned categories, PI based on 2PC takes advantage
of different cryptographic primitives. They customize 2PC
protocols for linear and nonlinear layers based on appropriate
techniques respectively. For expediting linear layer protocols,
Gazelle [22], GALA [19], and Cheetah [20] elaborate packing
algorithms for homomorphic linear calculations. To reduce
inference latency, Delphi [23] puts HE operations of the linear
layer protocol into the offline phase. To accelerate nonlinear
layer protocols, CrypTFlow2 [25] and Cheetah utilize OT
to perform the comparison operation in a privacy-preserving,
outperforming previous methodologies. The proposed schemes
employ distinct cryptographic tools for constructing linear and
nonlinear layer protocols, relying on tools such as ABY [28]
for data format conversion, necessitating the execution of
linear and nonlinear layer protocols in synchronous modalities.
In contrast, we design unified linear and nonlinear layer
protocols to reduce conversion cost and expedite inference by
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Fig. 10. Performance comparison of ImageNet dataset. CTF2 refers to
CrypTFlow2 [25].

asynchronous computation. Furthermore, the online phases of
our protocols exclusively involve lightweight ASS, enabling
the utilization of GPU for additional acceleration.

VIII. CONCLUSION

In this paper, we present a fast PI based on unified 2PC
protocols that leverage identical cryptographic primitives to
calculate linear and nonlinear layers. Our protocols consist
of an offline phase that utilizes HE to secretly share matrix
products and an online phase that only involves lightweight
operations on the shares. Benefiting from uniformity, we de-
couple certain procedures of linear and nonlinear layer proto-
cols and execute them asynchronously. Moreover, we propose
a homomorphic matrix encryption scheme that supports matrix
multiplication with lower complexity than Cheetah to expedite
the offline phase and employ GPU to speed up the online
phase. Our experimental assessments on well-established CNN
architectures, such as SqueezeNet, ResNet, and DenseNet,

reveal a 35− 45× reduction in inference latency compared to
Cheetah, with a corresponding 1.6−2.8× decrease in commu-
nication cost. Additionally, Fregata maintains an approximate
3× improvement in total runtime.
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APPENDIX
HOMOMORPHIC PROPERTY PROOF OF HME

We first formally prove that HME calculates homomorphic
matrix multiplication correctly. For clarity, we write π(i, j) =
i · n · k − j · n+ k · n− 1.

Theorem 3. Given an m × n plaintext matrix W
and a ciphertext [M ] of an n × k matrix M , where
[M ] ← EncMat(pk,M), the following equality holds:
DecMat(sk, MulMat([M ],W, k),m, n, k) ≡W ·M mod p.

Proof: Let [P ] denote the result of MulMat([M ],W, k).
The DecMat algorithm first computes P̂ ← Dec(sk, [P ])
and then extracts the coefficient of P̂ at position π(i, j) as
(W ·M)i,j , where 0 ≤ i < m and 0 ≤ j < k. Our objective
is to prove the equivalence: (W ·M)i,j ≡ P̂ π(i, j) mod p. P̂
is calculated from Ŵ ·M̂ within the MulMat algorithm, where
the coefficients of Ŵ and M̂ are 0 except for Ŵi·n·k+j ≡
Wi,j mod p (0 ≤ i < m, 0 ≤ j < n) and M̂n·k−j·n−i−1 ≡
Mi,j mod p (0 ≤ i < n, 0 ≤ j < k). Hence, we have
P̂π(i,j) ≡

∑
0≤t≤π(i,j) Ŵt · M̂π(i,j)−t −

∑
π(i,j)<t<N Ŵt ·

M̂N+t−π(i,j) mod p. Since M̂i = 0 for i ≥ n · k and Ŵj = 0
for j /∈ [u · n · k, u · n · k + n), where u is an integer with
0 ≤ u < m, it follows that P̂π(i,j) ≡

∑
0≤v<n Ŵi·n·k+v ·

M̂n·k−j·n−v−1 mod p ≡
∑

0≤v<n Wi,v ·Mv,j mod p, which
precisely equals (W ·M)i,j .

We then prove the homomorphic property of
DecMat(sk, AddMat(pk, [W ·M ], R) ≡ W ·M + R mod p,
which is utilized in the offline phase of PMatMul.

Theorem 4. Given a ciphertext [W · M ] obtained from
[W · M ] ← MulMat(EncMat(pk,M),W, k) and an m × k
plaintext matrix R, where W and M are m × n and
n × k matrices respectively, the following equality holds:
DecMat(sk, AddMat(pk, [W ·M ], R) ≡W ·M +R mod p.

Proof: For clarity, let [P ] denote [W · M ] and let [Q]
represent the result of AddMat(pk, [P ], R). The AddMat al-
gorithm encodes Ri,j (0 ≤ i < m, 0 ≤ j < k) into the
π(i, j)-th coefficient of R̂ and outputs [Q] ← Add([P ], [R]).
Recalling the proof of Theorem 3, we know that P̂ π(i, j) ≡
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(W · M)i,j mod p. Hence, we have Q̂π(i,j) ≡ P̂π(i,j) +

R̂π(i,j) mod p ≡ (W ·M)i,j + Ri,j mod p. Upon invocation
of DecMat, Q̂π(i,j) is assigned to the corresponding element
Yi,j of the output matrix Y . Consequently, we can conclude
that Y ≡W ·M +R mod p.
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