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Abstract—Existing backdoor defense methods for federated
learning (FL) usually try to distinguish between benign and
malicious clients. The key insight is that benign clients are densely
distributed, whereas malicious clients tend to be outliers outside
this distribution. However, this only holds when data is indepen-
dent and identically distributed (IID), and the effectiveness of
these methods under non-IID data has not been systematically
examined. In this paper, we present a comprehensive system-
atization of FL backdoor defense by breaking down its overall
pipeline into three key components, i.e., metrics for evaluating
clients, techniques for amplifying the difference between benign
and malicious clients, and mechanisms for identifying malicious
clients. We conduct an empirical study of FL backdoor defense
methods under non-IID data settings to explore whether benign
and malicious clients can be fully distinguished. Experimental
results show that the defense performance degrades significantly
when data is non-IID. Qur results also reveal how evaluation
metrics, amplification techniques and identification mechanisms
perform under diverse settings. Contrary to the established
belief, we further conclude that these defenses have inherent
shortcomings, due to lack of stability and robustness in detecting
malicious clients. We believe that our findings can better facilitate
the development of FL backdoor defenses.

Index Terms—Federated backdoor attack and

defense, non-IID data.

learning,

I. INTRODUCTION

EDERATED learning (FL) enables multiple clients, such
as smartphones and IoT devices, to collaboratively train
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a machine learning model without sharing their raw data
[11, [2], [3], [4]. Specifically, each client submits the model
update trained on its local data to a central server, which
aggregates these updates to refine the global model. Since
the server cannot directly access the computations and data
on the client side, an attacker can manipulate some clients
to stealthily inject a backdoor into the global model by
submitting malicious updates. This backdoor forces the model
to exhibit the attacker-chosen behaviors on specific test sam-
ples, while behaving normally on others. Researchers showed
that backdoor attacks can cause serious damages to real-
world FL applications, such as autonomous driving [5] and
healthcare [6].

A. Fl Defenses Against Backdoor Attacks

To mitigate backdoor attacks on FL, current defense meth-
ods are often performed on the server side, which can be
broadly classified into two categories, i.e., post-aggregation
defense [7], [8], [9], [10] and pre-aggregation detection [11],
[12], [13], [14]. Post-aggregation defenses focus on repairing
the backdoor model after federated model aggregation is
completed, leveraging techniques such as fine-pruning and
knowledge distillation, similar to those used for centralized
learning [15], [16]. However, they cannot promptly detect
attacks and remove backdoors, potentially leading to wasted
computational resources. Moreover, identifying the attacker
(i.e., manipulated clients) for accountability remains a chal-
lenge. In contrast, pre-aggregation defenses apply an anomaly
detector to identify and eliminate backdoor updates from
suspicious clients for aggregation. Such defenses enable real-
time detection of malicious updates during training, thereby
preventing attackers from injecting backdoors into the global
model. In this work, we focus on pre-aggregation detections
because, in addition to the aforementioned advantages, we
find that their effectiveness is highly dependent on the local
data distribution of clients, which aligns with our research
objective of reevaluating the performance of FL backdoor
defenses under diverse data distribution scenarios.

B. Unique Features of Pre-Aggregation Detections for Fl

In FL, client updates are essentially their renewed local
models. In this way, the most straightforward method for
detecting malicious updates is to conduct backdoor detection
on each local model individually. Although many backdoor
model detection methods have been established for centralized
learning, they often rely on computationally intensive trigger
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reverse engineering [17], [18], making them impractical in the
FL context, where detection is performed before each round
of federated aggregation across massive clients. Fortunately,
anomaly detection offers a promising alternative to identify
malicious client in FL, by leveraging the assumption that there
definitely exist benign clients which can serve as reference for
comparison. Building on this premise, current pre-aggregation
detection methods in FL typically start by identifying clients
with anomalous updates as potentially malicious clients. The
key insight is that due to the injection of a backdoor into
the local update, malicious clients tend to significantly deviate
from benign ones, thus becoming detectable outliers.

C. The Challenge Faced by Pre-Aggregation
Detection-Based Fl Defenses

The fundamental insight behind pre-aggregation detections
only holds when the data is independent and identically
distributed (IID) across clients. However, as highlighted in the
literature [19], [20], [21], FL often suffers from the challenge
of data heterogeneity, that is, the local data across clients is
non-IID. Accordingly, there may be larger variability among
benign clients, further complicating the differentiation between
benign and malicious clients. As a result, the effectiveness of
pre-aggregation detections will be significantly reduced.

D. Our Contributions

To our knowledge, several studies [22], [23], [24] mention
that pre-aggregation detections are not suitable for non-IID
scenarios, but none have thoroughly examined the reasons
behind this. In this work, we conduct a comprehensive study
of the pre-aggregation detections under non-IID scenarios. Our
ultimate goal is to reveal the inherent limitations of such
defenses and inspire research toward more robust solutions
to backdoor attacks in FL. Concretely, we make the following
key contributions.

e We establish six non-IID scenarios to simulate three types
of data heterogeneity, including label distribution skew,
feature distribution skew, and quantity skew. With this
setup, we extensively evaluate the performance of defense
methods under various data heterogeneity conditions and
explore the impact of different non-IID types.

e We summarize the FL backdoor defense paradigm for
pre-aggregation detection methods, which encompasses
the metrics for evaluating clients, techniques for amplify-
ing the differences between benign and malicious clients,
and mechanisms for identifying malicious clients. By
decoupling the defense pipeline, this paradigm facilitates
exploring the defense performance of evaluation metrics,
amplification techniques, and identification mechanisms
separately under various non-IID data settings.

e Based on extensive experimental results, we analyze the
effectiveness of pre-aggregation detections under non-
IID data settings from multiple perspectives, including
the impact of learning task complexity, the distinctions
among various types of data heterogeneity, and the
robustness of defense methods when facing different
poisoning hyperparameters. Considering more realistic
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(a) Artificial backdoor attacks

(b) Semantic backdoor attacks

Fig. 1. Illustration of the trigger patterns for artificial backdoor attacks and
semantic backdoor attacks.

federated learning scenarios, we reach a conclusion that
contradicts the common beliefs in the existing literature:
pre-aggregation detections are not capable of resisting
backdoor attacks in FL. We summarize the inherent
limitations of these defenses and offer some recommen-
dations for practitioners.

II. BACKGROUND
A. Federated Learning

Consider a typical FL system involving a central server and
a set of M clients that jointly train a machine learning model
while keeping their training data local. Each client i holds a
local dataset D; with s; = |D;| data samples. In each training
round ¢, the server randomly selects m clients and broadcasts
the current global model G’ to them. Each selected client i
performs local training using D; and sends the model update
W! to the server. The server then aggregates these updates to
build a new global model G'*! = G' + L 3" ‘W

B. Fl Backdoor Attacks

Despite its advantages, FL is vulnerable to backdoor attacks
[25], [26], where an attacker can manipulate several clients
to submit malicious updates, causing the global model to be
poisoned. We denote the proportion of compromised clients
among all participants as poisoned model rate (PMR). The
poisoned model would perform well on normal inputs but
behave maliciously on specific attacker-chosen inputs with
certain trigger patterns. Specifically, the attacker manipulates
the local data of compromised clients to insert a backdoor. We
denote the fraction of poisoned data among the overall local
data as poisoned data rate (PDR). Based on trigger pattern
characteristics, FL backdoor attacks are broadly categorized
into artificial backdoor attacks and semantic backdoor attacks,
as illustrated in Fig. 1.

1) Artificial Backdoor Attacks: In artificial backdoor
attacks, the trigger (e.g., square pattern) is attached to the
original input and the target samples can belong to any class.
To make the assault more convert, DBA [27] exploits the
distributed nature of FL by decomposing the target trigger
into multiple local triggers, with each compromised client
injecting only one partial trigger into its local data. Beyong
fixed triggers, some advanced attacks further optimize the
trigger during training using regularization terms (e.g., CerP
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[28]) or adversarial learning (e.g., A3FL [29]) to enhance the
attack effectiveness and stealthiness.

The focus of our work is to investigate the defense perfor-
mance under non-IID data settings, an intrinsic problem of
FL [19], [20], [21], making it hard to deploy in practice. Due
to space limitations, we only examine the most representative
DBA attack. This does not affect our main conclusion: defense
methods fail under non-IID data conditions even against the
simplest attack. In fact, if a defense method cannot resist DBA,
it will be even less effective against more advanced attacks.

2) Semantic Backdoor Attacks: Different from artificial
backdoor attacks, semantic backdoor attacks [30] treat specific
characteristics within a certain class of samples as triggers
(e.g., green car and stripped pattern in the scene). The attacker
flips their labels without modifying the features (e.g., labeling
green car images as “frog”). To prevent the benign clients’
updates from diluting the backdoor effect, ECBA [25] pro-
poses to poison those out-of-distribution samples. Since these
samples lie at the tail of the data distribution of benign clients,
the impact of the backdoor is maintained.

In ECBA, malicious clients possess some out-of-distribution
samples with labels flipped by the attacker. We observe that
when each benign client only holds samples from a single
class (i.e., an extreme non-IID scenario), there is no clear
distinction between the behavior of malicious and benign
clients, as both assign a specific class to their local samples.
To investigate whether malicious and benign clients become
indistinguishable in such highly heterogeneous settings, we
conduct a case study based on ECBA in Section IV-F.

C. Simulating Non-IID Data

In FL, non-IID data settings can be categorized from a
distribution perspective [31]. Let x; and y; denote the features
and labels of local data D;, respectively. Considering the
local data distribution P(x;,y;) = P(xily)P(y;) = P(yilx)P(x;),
data heterogeneity includes the following five types: (1) label
distribution skew, i.e., P(y;) varies across clients; (2) feature
distribution skew, i.e., P(x;) differs across clients; (3) identical
labels but different features, i.e., P(x;ly;) varies across clients;
(4) identical features but different labels, i.e., P(y;|x;) differs
across clients; and (5) quantity skew, i.e., P(x;,y;) is the same
but data volume is different among clients. Among the above
types, the third is typically observed in vertical FL [32],
while the fourth is uncommon in most FL studies. Hence, we
primarily focus on the other three types in this work. Below,
we introduce them and present the corresponding simulation
methods used in our experiments, as shown in Table I.

1) Label Distribution Skew: Label distribution skew refers
to variations in label distributions among clients’ local data.
For example, the specialized hospitals that focus on treating
specific diseases tend to collect data with a higher proportion
of samples related to those diseases.

a) Quantity-based label imbalance: In this scenario,
each client holds samples from a fixed set of labels. Specif-
ically, each client is assigned k distinct labels, denoted as
#C = k, where C represents the set of unique labels held
by a client. Labels are first uniformly distributed across all
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TABLE I

CLASSES OF NON-IID DATA IN FLL. AND THE CORRESPONDING
SIMULATION METHODS USED IN OUR EXPERIMENTS

Category Simulation methods Description
vunisca | EACANARD
R

Label ient 1

distribution Client

/[
Distribution-based
label imbalance n
Noise-based
feature imbalance

Feature

distribution

skew
Real-world
feature imbalance

. o A

Quantity Distribution-based 1 A

skew quantity imbalance | HA A H A

Client 1

e e
o

Mixed types Real-world ém

of skew data imbalance 6%
o
5]
Number of Samples

clients, and the data corresponding to each label is evenly
shared among clients possessing that label.

b) Distribution-based label imbalance: In this setup,
each client is allocated a portion of samples from each label
based on the Dirichlet distribution [33], a continuous prob-
ability distribution defined over multidimensional probability
vectors. Specifically, for a class c in the dataset, a probability
vector [pe1, pe2s -+ » Pem] 18 generated using the parameter a,
where M is client number and ZZI pei = 1. Each client then
samples data for class ¢ according to the assigned probabilities.
The parameter « controls the level of label skew and smaller
a values result in more imbalanced data distributions. For ease
of presentation, we denote this simulation method as Dir(a).

2) Feature Distribution Skew: Feature distribution skew
refers to the situation where clients share the same conditional
distribution P(y;|x;), yet the feature distributions of their local
data P(x;) differ significantly. For example, clients collecting
handwriting data from different individuals encounter varia-
tions in writing styles.

a) Noise-based feature imbalance: This situation simu-
lates the skewed feature distributions by introducing varying
degrees of noise to the original data. Specifically, the data is
first evenly distributed among clients. For client i, the Gaussian
noise with a mean of 0 and a standard deviation of o -i/M is
added to its local data, where o controls the level of feature
dissimilarity among clients. We denote this method as Gau(o).

b) Real-world feature imbalance: The FEMNIST dataset
[34] is a collection of handwritten digits from various writers.
In particular, the writers (and their corresponding digits) are
randomly and equally assigned to each client. As each writer
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has unique character features, the feature distributions are
different among clients.

3) Quantity Skew: Quantity skew occurs when clients share
the same distribution P(x;,y;) but differ in the amount of
samples they possess. For example, large banks typically have
far more customers than small banks, resulting in a larger
volume of training data.

a) Distribution-based quantity imbalance: This setup
simulates the variations in sample quantities among clients
using the Dirichlet distribution. Specifically, a probability
vector [p1, p2,---, pml is generated based on the parameter
a. This vector determines the number of samples allocated to
each client. The samples are then randomly assigned to clients
according to these proportions. We denote this simulation
method as gDir(a).

4) Mixed Types of Skew: Mixed types of skew refers to a
combination of multiple types of skew, making the situation
more complex. For example, when training a prediction model
using purchase information on users’ mobile devices, each
user’s purchase activity level and pReferences vary, leading
to differences in both data quantity and feature distribution.

a) Real-world data imbalance: The LOAN dataset [35]
comprises data related to loan predictions, with each sample
containing information about a loan application and the label
indicating the application’s outcome. In LOAN, the data is
distributed among clients based on the states where loan
applicants reside, with each client representing one state,
resulting in a total of 51 clients. The data distribution across
clients is visualized in Table I, where only eight clients are
shown as examples and each color represents a different
label. It is evident that this dataset exhibits quantity skew.
Additionally, as each client’s data comes from different states,
it also demonstrates feature distribution skew.

III. SYSTEMATIZATION OF FL BACKDOOR DEFENSES
A. Overview

Existing server-side backdoor defenses for FL can be
broadly categorized into two main types: post-aggregation
defense and pre-aggregation detection. The first type is
designed to directly repair the global model after aggregating
all local updates, regardless of whether they contain malicious
ones. It can effectively eliminate the impact of backdoor,
by applying techniques such as perturbation [7], smooth-
ing [8], knowledge distillation [9], and fine-pruning [10] to
the aggregated model. In contrast, the second type employs
anomaly detection to identify malicious clients and exclude
them from aggregation, under the premise that malicious
clients inevitably exhibit substantial deviations from benign
ones due to the backdoor injected into their local updates
[11], [12], [13], [14]. It is particularly attractive to FL, as
it allows for real-time detection of malicious updates during
training, thereby preventing attackers from injecting backdoors
into the global model. Moreover, it also enables accountability
for malicious clients when necessary.

Despite these benefits, the performance of pre-aggregation
detection can be affected by the local data distributions of
clients. This is because there may be larger variability among
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benign clients under non-IID data situations, further compli-
cating the differentiation between benign and malicious clients.
Our work focuses on systematically investigating the effective-
ness of the pre-aggregation detection methods in distinguishing
malicious clients from benign ones during training under non-
IID data settings. Therefore, post-aggregation defenses that
do not differentiate between benign and malicious clients are
beyond the scope of this work. In the rest of this paper, “FL
backdoor defense” refers specifically to the pre-aggregation
detection, unless explicitly stated otherwise.

B. The Pipeline of Fl Backdoor Defense

We break down the FL backdoor defense pipeline into three
steps: (1) select a metric to evaluate clients’ local updates,
(2) amplify the differences between benign and malicious
clients based on this metric, and (3) identify malicious clients
among all participants and exclude them from global model
aggregation. Below, we introduce the efforts made by nine
state-of-the-art (SOTA) FL backdoor defenses in distinguish-
ing between benign and malicious clients at different steps,
aiming to maintain defense effectiveness even under non-1ID
settings. Specifically, at each step of the defense pipeline,
we categorize the employed methods into several prototypes.
A summary of these prototypes is presented in Table II.

1) Metrics for Evaluating Clients: Based on the character-
istic that malicious clients embed backdoors into their local
models, evaluation metrics are crafted to capture the unique
traits of malicious updates as much as possible.

a) All parameters of local update: Using all parameters
of the local update is the simplest and most straightforward
method since it contains all information in the local update,
including the backdoor in malicious update.

b) Local update of the last FC layer: Since the labels of
the attacker-chosen samples are flipped in backdoor attacks,
the impact of the backdoor on the last fully connected (FC)
layer is more pronounced than on other layers, which moti-
vates using local update of the Last FC Layer for evaluation.

¢) DCT-transformed local update: Backdoor attacks
associate specific patterns with particular outputs, shifting the
energy distribution of updates towards certain frequencies. As
a result, using DCT transformation [40], malicious updates
become more distinguishable from benign ones in frequency
domain.

d) Model-update consistency: For a benign client i
employing gradient descent for local model training, its
updates W!™! and W! in two consecutive rounds satisfy
Wi = WL + HE - (G' = G™!) according to Cauchy’s mean
value theorem. Here, H,? is an integrated Hessian matrix for
client i, and G’ and G'~! are global models in rounds ¢ — 1
and ¢, respectively. This equation exhibits the consistency
between two consecutive updates from a benign client, while
the malicious updates, manipulated by the attacker, fail to
achieve this.

e) Model activations of benign samples: Although the
backdoor model can correctly predict the labels of benign
samples, the activations of its hidden layers differ from those
of a benign model. When benign samples are unavailable,
the server can distribute the uploaded local models to the
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TABLE I
THE PROTOTYPES OF EACH STEP IN THE PIPELINE OF NINE SOTA FL BACKDOOR DEFENSES

Method Evaluation Metric

Amplification Technique

Identification Mechanism

FLAME [26]
Multi-metrics [36]
FLTrust [37]
FL-Defender [38]
FoolsGold [39]
FreqFed [13]
FLDetector [11]
CrowdGuard [12]
FLShield [14]

All parameters of local update
All parameters of local update
All parameters of local update
Local update of the last FC layer
Local update of the last FC layer
DCT-transformed local update
Model-update consistency

N/A
N/A

Model activations of benign samples;

Model activations of benign samples;

Peer comparison;

Peer comparison,

Server benign reference

Peer comparison;, Median-based reference
Within-group consistency-based measurement
Peer comparison;

History-based enhancement

Unsupervised learning-based categorization;
Predefined parameter-based selection;
Predefined parameter-based selection,
Predefined parameter-based selection;
Predefined parameter-based selection;
Unsupervised learning-based categorization;
Unsupervised learning-based categorization,
Unsupervised learning-based categorizations

Predefined parameter-based selection;

i_ “Model activations of benign samples;,” use the activations from all layers and from only the final layer, respectively.

ii “Peer comparison|_,” represent forming a vector of pairwise distances and summing the pairwise distances, respectively.
iii “predefined parameter-based selection;»” denote the top-K selection and threshold comparison, respectively.

¥ «“Unsupervised learning-based categorization;_3” refer to HDBSCAN, K-means, and agglomerative clustering, respectively.

3

validation clients (referred to as “validator” hereinafter) and
construct evaluation metrics according to their feedback on
local samples. This prototype is further categorized into two
variants, one utilizing activations from all layers and the other
relying solely on the final layer, which are denoted as subscript
1 and subscript 2, respectively, in Table II.

2) Techniques for Amplifying Difference: Amplification
techniques can further enhance the distinction of evaluation
metrics between benign and malicious clients, thereby aiding
in the subsequent identification of malicious clients.

a) Peer comparison: This technique measures a client
using the pairwise distance (e.g., cosine distance, Euclidean
distance, and Manhattan distance) between evaluation metrics
of this client and all other clients. Since the evaluation metrics
of malicious clients deviate from those of benign ones, it
enhances the distinction between malicious and benign clients.
This prototype can be instantiated in two forms, one forming
a feature vector from the pairwise distances and the other
aggregating the pairwise distances by summation, which are
marked with subscripts 1 and 2 in Table II.

b) Server benign reference: Assuming that the server
holds a portion of clean data, it can use this clean data to
train a benign update as a trusted reference in each round.
The distance between the evaluation metrics of each client and
this benign one is then calculated to amplify the differences
between benign and malicious clients.

c) Median-based reference: If more than 50% of the
clients are presumed benign, the median value of all clients’
evaluation metrics can serve as a trusted reference. Calculating
the distance between each client’s evaluation metric and the
median further distinguishes malicious clients from the benign
ones.

d) Within-group consistency-based measurement: This
technique considers that the evaluation metrics of malicious
clients exhibit similarity because they have a shared attack
objective while benign ones show diversity due to the stochas-
tic nature of stochastic gradient descent (SGD). Therefore,
when measuring a client by its minimum distance to all other
clients, malicious clients often exhibit smaller values.

e) History-based enhancement: Since malicious clients
upload malicious updates over multiple rounds, incorporat-
ing historical information within a recent time window can
enhance the client’s evaluation metrics.

3) Mechanisms for Identifying Malicious Clients: After
measuring each client in the previous two steps and obtaining
their amplified metrics, the identification mechanism deter-
mines which clients are malicious.

a) Predefined parameter-based selection: Based on
empirically determined parameters, this type of identification
mechanism directly selects malicious clients, such as through
top-K selection or threshold comparison, which can be denoted
with subscripts 1 and 2, respectively, in Table II.

b) Unsupervised learning-based categorization: As
unsupervised learning can learn relative relationships of data,
this type of identification mechanism deploys clustering
to categorize malicious clients, such as HDBSCAN [41],
K-means and agglomerative clustering [42] with a fixed num-
ber of clusters, which dynamically determines the number of
clusters. These three mechanisms are sequentially marked with

subscripts 1, 2 and 3 in Table II.
IV. ANALYSIS OF DEFENSE EFFECTIVENESS

UNDER NON-IID SETTINGS

In this section, we analyze the effectiveness of FL backdoor
defense methods under non-IID data settings. Specifically,
we start by evaluating the performance of SOTA methods in
Section IV-B, and then explore the impact of learning task
complexity, non-IID type and poisoning hyperparameters on
defense effectiveness under non-IID settings (Sections IV-C
to IV-E). Finally, we present a case study in Section IV-F
based on ECBA under the #C = 1 setting, and further
investigate the existence of defense boundaries in Section
IV-G. For reproducibility of experimental results, we make our
code available at https://github.com/Gloriatry/Back to non-
IID data

A. Experimental Setup

We implement all experiments in Python using PyTorch 1.10
on a server with Intel Xeon Gold 6133 CPU, 251GB RAM,
24 GB NVIDIA GeForce RTX 4090 GPU, and Ubuntu 20.04.
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TABLE III
DATASETS USED IN OUR EXPERIMENTS

Datasets #Records | #Features | #Classes | Default Model #Params
EMNIST 280K 784 10 CNN 431K
CIFAR-10 60K 1024 10 ResNet-18 2.7™M
CIFAR-100 60K 1024 100 ResNet-18 2.7M
CINIC-10 270K 1024 10 ResNet-18 2.M
FEMNIST 380K 784 10 CNN 431K
LOAN 2.26M 91 9 MLP 5.53K

1) Datasets and Models: Following recent studies on FL
backdoor attacks and defenses [14], [26], [30], [36], we con-
duct systematic experiments on multiple widely used datasets,
including five image datasets (i.e., EMNIST [43], CIFAR-
10 [44], CIFAR-100 [44], CINIC-10 [45], and FEMNIST
[34]) and one tabular dataset (i.e., LOAN [35]), to validate
the robustness and generalizability of our results. For the
employed models, we use a CNN [46] for EMNIST and
FEMNIST, a ResNet-18 [47] for CIFAR-10, CIFAR-100, and
CINIC-10, and an MLP [48] for LOAN. The statistics of these
datasets and models are summarized in Table III.

2) Assessment Metrics: We use the following metrics to
assess the effectiveness of FL backdoor defenses. Backdoor
accuracy (BA) measures the proportion of trigger samples for
which the model outputs the attacker-chosen label, reflecting
model performance on the backdoor task. Attackers aim to
maximize BA, whereas a lower BA indicates a more effective
defense. Main task accuracy (MA) refers to the proportion
of test samples for which the model predicts the correct
label, measuring model accuracy on the main task. Attackers
need to maintain high MA for stealthiness, while the defense
techniques should avoid adversely affecting MA. True positive
rate (TPR) represents the ratio of correctly identified malicious
clients among all participating malicious clients (i.e., TPR =
7hiFy ). While true negative rate (TNR) measures the ratio
of correctly identified benign clients among all participating
benign clients (i.e., TNR = %). We present both TPR and
TNR using the average value across all rounds. And higher
TPR and TNR reflect more accurate detections. All metric
values are reported in percentages.

3) Default Configurations: By default, we assume 100
clients, with 25 selected per training round. The SGD opti-
mizer is used with a learning rate of 0.01 and a momentum
of 0.9. The batch size and local epochs are set to 64 and 3,
respectively. Attackers use a PDR of 0.2 and a PMR of 0.3.

To simulate various non-IID settings in our experiments,
we meticulously choose a set of representative parameters.
Specifically, to contrast with the IID setting, we set #C = 2
and #C = 3, which not only exhibit a high degree of
heterogeneity but also better reflect realistic conditions. For
distribution-based label imbalance, we adopt Dir(0.1) and
Dir(0.5), following numerous studies on data heterogeneity in
FL [49], [50], [51], where Dir(0.1) corresponds to a highly het-
erogeneous case in practice, while Dir(0.5) represents a more
moderate level. For noise-based feature imbalance, we follow
[52] in choosing the Gau(0.1) setting, where the injected noise
effectively differentiates feature distributions across clients.
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For quantity skew, we also follow [52] and use the gDir(0.5)
setting, wherein the variation in local sample sizes among
clients is sufficiently large to induce heterogeneity.

B. Evaluating SOTA Defenses

In this section, we summarize the defense performance of
each SOTA method under various non-IID data settings and
analyze the effectiveness of the three steps in its defense
pipeline using visualization results on CIFAR-10.

Table IV presents the defensive results of different defense
methods against DBA on different datasets under various non-
IID data settings, with each defense’s effectiveness assessed
compared with FedAvg. We consider a defense successful if it
reduces BA to below 20% while decreasing MA by no more
than 3%. The successful defense cases are marked out.

In FL, non-IID data often degrades MA [52] and BA
may fluctuate throughout the training process [30]. Moreover,
some defense methods considered in this paper not only
detect and remove malicious updates but also subsequently
apply post-aggregation defense to the global model, which
further reduces BA, albeit with potential impacts on MA.
For example, FLAME adds noise to the aggregated model
in each round. To highlight the defense methods’ ability to
distinguish between benign and malicious clients, we present
the TPR and TNR metrics on CIFAR-10 in Table V, with
successful defense cases also marked out. There is an obvious
correlation between TPR and BA. In general, a TPR above
95% ensures successful defense; otherwise, many malicious
updates infiltrate the global model, resulting in a high BA. In
conclusion, BA and MA capture the overall performance of
FL backdoor defense methods, while TPR and TNR evaluate
their efficacy in detecting malicious clients.

1) Flame Evaluation: From Tables IV and V, FLAME
successfully defends in most cases, but under the Dir(0.1)
setting, the post-defense BA still reaches 91.87%. To visu-
alize the distribution of clients, we use principal component
analysis (PCA) [53] to reduce the dimension of amplified
metric in FLAME (i.e., the vector composed of pairwise
distances to clients) for each client to 2. The results on CIFAR-
10 are presented in Fig. 2. Under the IID, #C = 2, and
Gau(0.1) settings, the amplified metrics effectively distinguish
between benign and malicious clients, as benign clients (blue
points) are clustered together while malicious clients (red
points) are farther apart. However, under other settings, the
differences among benign updates become larger, leading to
lower consistency in the amplified metrics of benign clients
(e.g., Dir(0.5) and #C = 3) or even bringing them closer
to those of malicious clients (e.g., Dir(0.1) and gqDir(0.5)).
The HDBSCAN clustering algorithm employed in FLAME,
which dynamically determines the cluster number, identifies
all clients that are difficult to group into the largest cluster as
malicious. This avoids mistakenly grouping malicious clients
into the benign cluster just because there exist more different
benign ones. Consequently, despite ambiguous boundaries in
the amplified metric distributions of malicious and benign
clients, HDBSCAN can successfully identify malicious clients
under the Dir(0.5), #C = 3, and gDir(0.5) settings with
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TABLE IV

THE BA/MA OF SOTA DEFENSES AGAINST DBA UNDER VARIOUS NON-IID SETTINGS, WITH SUCCESSFUL DEFENSE CASES MARKED OUT

Category Dataset Setting FedAvg FLAME Multi-metrics FLTrust FL-Defender | FoolsGold FreqFed FLDetector | CrowdGuard FLShield
EMNIST 100/99.6 0.05/99.56 100/99.57 0.07/99.55 0.07/99.57 0.06/99.54 0.06/99.57 27.66/99.56 0.07/99.55 0.06/99.54
Ho.mo.gen.eous CIFAR-10 N/A 97.71/69.28 2/69.46 96.04/70.42 98.4/71.07 2.07/70.68 2.05/69.34 2.09/69.48 48.71/70.11 2.15/69.6 2.14/69.41
distribution CIFAR-100 97.94/67.61 1.03/67.22 97.3/67.91 95.7/68.12 2.35/68.14 4.42/67.77 1.1/67.12 82.04/68.42 1.07/67.94 1.1/67.83
CINIC-10 98.96/81.49 4.13/78.46 99.9/81.21 98.56/80.39 99.51/81.07 3.89/80.8 4.12/80.6 99.94/80.72 99.79/81.22 99.41/80.89
Dir(0.5) 100/99.53 0.06/99.52 99.78/99.51 0.41/99.5 100/99.53 100/99.53 0.05/99.52 7.61/99.53 0.05/99.51 0.06/99.53
EMNIST Dir(0.1) 100/99.4 0.08/99.09 0.05/99.35 0.19/99.18 100/99.39 100/99.39 0.08/99.11 5.65/99.36 100/99.34 0.11/99.25
#C =3 100/99.52 0.05/99.44 0.09/99.46 0.07/99.36 100/99.47 100/99.51 0.05/99.47 13.45/99.48 0.06/99.44 0.05/99.47
#C =2 100/99.39 0.36/98.33 0.07/99.43 0.07/99.14 100/99.36 100/99.4 0.33/98.74 87.24/99.43 0.56/99.35 0.29/99.23
Dir(0.5) 94.81/68.02 9.15/66.22 92.85/69.43 94.38/69.01 96.1/67.83 94.76/69.06 5.59/69.24 12.2/70.02 92.92/69.21 5.63/69.2
CIFAR-10 Dir(0.1) 95.86/56.42 | 91.87/58.66 94.9/55.76 95.44/52.49 94.14/58.24 92.52/59.82 | 93.45/ 57.12 96.3/60.54 95.2/56.96 93.59/59.37
#C =3 97.63/58.41 7.4/64.4 92.37/59.79 96.72/62.06 97.15/60.29 96.09/63.09 6.64/64.23 14.58/61.63 95.38/67.69 6.12/67.78
dist‘iit?lfllion #C =2 99.08/28.73 6.42/31.94 96.86/28.7 97.74/123.9 96.5/24.69 98.31/26.62 12.37/30.36 15.77/30.7 98.62/35.77 99.66/31.99
skew Dir(0.5) 97.69/65.35 1.62/65.67 97.68/65.13 96.34/66.38 90.61/65.97 97.17/65.21 0.89/65.37 99.29/65.88 88/65.45 0.32/66.23
CIFAR-100 Dir(0.1) 98.05/61.94 | 93.09/61.08 97.74162.34 97.45/62.12 94.63/61.83 98.78/61.49 97.44/62.08 99.39/62.03 88.4/61.85 91.34/61.92
#C =30 | 97.18/65.11 0.72/65.21 97.68/65.38 97.19/65.39 94.09/65.12 96.53/64.92 0.65/64.91 57.13/64.88 82.37/65.03 0.78/65.27
#C =20 | 97.83/63.74 1.03/63.26 97.25/63.87 97.53/64.92 83.51/62.77 99.26/63.58 0.65/63.41 99.31/63.76 81.35/63.28 92.57/64.15
Dir(0.5) 99.56/76.26 | 99.76/75.29 99.96/76.13 99.74/76.65 99.92/75.03 99.86/74.98 97.55/74.75 99.91/77.54 99.92/76.97 98.88/76.32
CINIC-10 Dir(0.1) 99.68/63.75 | 99.96/62.29 99.82/61.52 99.88/67.04 99.92/60.95 99.65/59.83 98.73/63.27 99.96/68.72 99.09/64.15 99.57/64.01
#C =3 99.93/49.46 100/43.92 100/48.24 99.98/53.27 99.99/47.22 99.85/46.19 99.98/44.42 99.99/55.48 99.99/47.61 99.92/49.45
#C =2 99.98/42.54 100/29.4 100/38.29 99.99/40.09 99.98/36.65 99.73/31.39 99.89/28.9 100/38.94 99.83/37.54 99.69/34.94
EMNIST 100/99.57 0.06/99.57 100/99.58 0.06/99.55 0.09/99.57 0.07/99.54 0.06/99.57 28.46/99.55 0.07/99.55 0.07/99.57
_Fef'nur_e CIFAR-10 Gau(0.1) 94.83/70.8 3.52/70.88 89.68/72.01 97.52/71.66 80.78/72.08 3.08/71.55 3.32/70.77 50.38/71.42 3.33/70.79 3.55/70.95
distribution CIFAR-100 97.96/66.44 0.75/65.48 95.69/67.49 96.33/66.28 81.99/65.71 0.85/67.02 0.73/66.59 78.89/66.18 89.06/66.79 0.27/67.23
skew CINIC-10 99.23/81.47 4.13/78.46 99.9/81.21 98.56/0.39 99.51/81.07 3.89/80.8 4.29/80.66 99.94/80.41 99.51/81.23 99.56/80.78
FEMNIST N/A 100/99.45 0.04/99.4 100/99.45 0.04/99.33 0.04/99.4 0.08/99.4 0.04/99.4 100/99.4 0.03/99.36 0.03/99.37
EMNIST 100/99.59 0.06/99.59 0.09/99.57 0.07/99.55 100/99.57 99.91/99.6 0.07/99.54 7.68/99.58 0.06/99.56 0.06/99.57
Quantity CIFAR-10 . 95.07/74.56 6.85/73.96 92.37/74.51 92.11/74.51 72.16/74.73 3.74/74.51 34.03/73.31 69.27/74.85 90.15/75.17 3.91/74.25
skew CIFAR-100 apir(0:3) 95.14/68.11 | 75.42/68.21 95.07/69.21 95.25/68.17 87.67/68.37 31.31/68.19 80.03/69.91 94.54/68.1 95.03/67.88 0.65/68.59
CINIC-10 99.21/81.18 | 98.86/77.08 99.71/81.06 98.95/80.2 97.38/80.97 3.49/80.86 99.21/79.95 99.73/81.3 97.04/81.14 98.03/80.38
Mixed types LOAN N/A 99.96/97.36 | 99.96/97.29 99.96/97.28 99.83/97.32 0.16/97.34 0/97.19 99.97/97.31 99.95/97.31 99.93/97.07 99.97/97.05
Ry T T T y 3
Qs olf K E le .. 2 Kk 2 RREIR .
PCA Axis 1 FCA A T AT ‘P(;A s AT PCA AXis 1A - PCA Axis 1 -
(a) IID (b) Dir(0.5) (c) Dir(0.1) (d) #C=3 (e) #C=2 (f) Gau(0.1) () qDir(0.5)

Fig. 2. Visualization of each participating client’s amplified metric on CIFAR-10 under various non-IID settings in FLAME, where

red and blue represent

malicious and benign clients, triangles and circles represent clients identified as malicious and benign by FLAME, respectively.

TABLE V

TPR AND TNR OF SOTA DEFENSES ON CIFAR-10 UNDER
VARIOUS NON-IID SETTINGS, WITH SUCCESSFUL
DEFENSE CASES MARKED OUT

Defense Metric 1ID Dir(0.5) | Dir(0.1) ‘ #C=3 #C=2 Gau(0.1) | ¢Dir(0.5)
FLAME TPR 100 98.8 49.81 100 100 100 97.01
TNR 83.5 73.29 54.87 77.99 80.52 83.42 75.77
. . TPR 63.45 60.39 49.81 64.15 66.69 66.97 61.38
Multi-metrics
TNR 85.79 84.58 80.48 86.03 87.04 87.17 84.98
FLTrust TPR 44.57 46.59 46.09 47.61 52.6 47.67 58.56
) TNR 53.61 61.08 59.38 62.04 53.28 55.49 56.49
. TPR 100 35.44 29.93 27.8 41.57 95.99 90.6
FL-Defender
TNR 100 74.89 7275 71.92 77.28 98.44 96.34
TPR 100 64.06 67.03 4332 37.62 99.97 99.95
FoolsGold
TNR 84.88 58.08 28.82 57.71 41 98.66 87.36
TPR 100 100 77.21 100 100 100 92.7
FreqFed
TNR 82.6 75.71 64.9 79.18 78.81 84.21 75.59
TPR 100 99.99 27.78 100 99.98 100 97.2
FLDetector
TNR 100 99.42 76.64 99.57 99.64 100 99.9
TPR 100 36.91 0 12.79 7.46 100 9.2
CrowdGuard
TNR 100 93.43 93.2 93.01 93.82 99.72 98.02
FLShicld TPR 100 100 80.73 100 36.87 100 99.96
TNR 7222 7222 60.77 ‘ 72.22 47.67 72.22 7221
high TPR. However, it still fails when the degree of data

heterogeneity is too high (e.g., Dir(0.1)).
2) Multi-Metrics Evaluation: We observe that Multi-
metrics performs poorly overall and exhibits instability

under non-IID settings, with the post-defense BA generally
exceeding 90% and a low TPR. To reduce dimensionality,
Multi-metrics sums across the client dimension after comput-
ing pairwise distances between local updates. This method
may lead to the loss of important information as it does
not account for the distinctions between a client and other
clients separately. Moreover, the top-K selection method used
in Multi-metrics is overly simplistic, requiring the evaluation
metrics and amplification techniques to possess strong discrim-
inative ability. How to determine the optimal value for K also
poses a big challenge.

3) FLTrust Evaluation: FLTrust performs poorly overall
under non-IID settings, with the post-defense BA still above
92% and the TPR typically ranging between 45% and 55%.
For amplification, FLTrust uses the server’s trusted benign
update as reference. However, the effectiveness of this tech-
nique heavily depends on the distribution of the clean dataset
on the server. If there is a significant difference between
the server’s clean data and a benign client’s local data,
the distance will be large, leading to misclassification of
benign updates. Furthermore, setting a distance threshold in
FLTrust is not robust because it is difficult to determine
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Fig. 3. Visualization of each participating client’s feature vector on CIFAR-10 under various non-IID settings in FL-Defender, where red and blue represent

malicious and benign clients, respectively.
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Fig. 4. Visualization of each participating client’s feature vector on CIFAR-10 under various non-IID settings in FreqFed, where red and blue represent
malicious and benign clients, and triangles and circles represent clients identified as malicious and benign by FreqFed, respectively.

an appropriate threshold that performs well across diverse
scenarios.

4) Fl-Defender Evaluation: FL-Defender performs poorly
overall under label distribution skew settings, with the post-
defense BA above 95%. Under the Gau(0.1) and gDir(0.5)
settings, though BA decreases by 14%-23% compared to
before defense, the defense remains unsuccessful. For each
client, FL-Defender calculates the distances between its last
FC layer’s update and those of other clients to form a
feature vector. We perform PCA on the feature vectors and
visualize the results on CIFAR-10 in Fig. 3. Under the IID,
Gau(0.1), and gDir(0.5) settings, the distribution of benign and
malicious clients has a clear distinction; Yet, under the label
distribution skew case (e.g., #C = k and Dir(a)), it becomes
harder to distinguish them. This is because the last FC layer’s
parameters are influenced not only by backdoor attack but also
by label distribution of training data. As a result, malicious
clients become dissimilar due to varied label distributions of
local data, and the differences among benign clients increase.

After obtaining the feature vectors, FL-Defender chooses
the coordinate-wise median vector as a trustworthy benign
reference to further amplify the differences between benign
and malicious clients. Yet, this technique is not robust because
the distribution of benign and malicious clients on a certain
dimension of feature vectors may not be regular, making the
median value not necessarily originating from a benign client.
For example, in Fig. 3(f), the median value on Axis 1 clearly
originates from a benign client, whereas the median value
on Axis 2 may originate from a malicious client. Due to
incorrect reference selection, FL-Defender still fails to defend
effectively, despite the fact that malicious and benign updates
are already well distinguished (cf., Fig. 3(f) and Fig. 3(g)).

5) FoolsGold Evaluation: FoolsGold performs well under
the Gau(0.1) and gDir(0.5) settings, but fails in the case of
label distribution skew with post-defense BA exceeding 92%.
To amplify the differences, FoolsGold calculates, for each
client, the minimum distance to all other clients, considering
that malicious clients exhibit high consistency in their last
FC layer parameters. However, this does not apply under the

label distribution skew settings, because malicious updates in
the last FC layer become diverse due to the differing label
distributions of local data on malicious clients.

6) FreqFed Evaluation: FreqFed successfully defends in
most cases, but under the Dir(0.1) setting, the post-defense
BA still reaches 93.45%. We conduct PCA on the amplified
metric in FreqFed (i.e., the vector formed by the pairwise
distances of DCT-transformed local updates) for each client
and visualize the results on CIFAR-10 in Fig. 4. Under all
settings except Dir(0.1) and gDir(0.5), the distinction between
benign and malicious clients is evident. However, under the
Dir(0.1) and gDir(0.5) settings, the amplified metrics of benign
and malicious clients become indistinguishable. This suggests
that label distribution skew and quantity skew can induce
significant differences in model updates in the frequency
domain, which are even greater than those caused by backdoor.

7) FLDetector Evaluation: — FLDetector successfully
defends under most non-IID cases but fails under the Dir(0.1)
setting, with a post-defense BA of 96.3%. It is worth noting
that since FLDetector relies on historical data from N rounds
to make detection decisions, there is no defense applied in the
initial rounds, causing a rapid rise in BA. Once the defense is
activated, BA gradually declines, but it does not drop below
20% quickly. Therefore, we use TPR instead of BA to assess
the defense’s success in FLDetector. Using model-update
consistency as the evaluation metric, FLDetector employs
L-BFGS algorithm [54] to estimate a single Hessian matrix
H' for all clients based on the differences in the global
model over several past rounds. It then predicts the update
WI as Wl’ = Wit + H' - (G' = G'"), and computes the
difference between the predicted update Wl’ and the actual
update W!. However, under non-IID settings, the estimated
Hessian matrix computed based on the global model is
no longer accurate since the inconsistency in local model
update directions leads to a decline in the global model’s
generalization ability [52]. Therefore, the difference between
the predicted update and actual update for benign clients
increases, which further complicates the distinction between
benign and malicious clients.
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Fig. 6. Visualization of each participating client’s LIPC metric on
malicious and benign clients, respectively.

8) CrowdGuard Evaluation: CrowdGuard successfully
defends only under the Gau(0.1) setting but fails in the case
of label distribution skew and quantity skew, with a post-
defense BA exceeding 90%. CrowdGuard defines a hidden
layer backdoor inspection metric (HLBIM), which measures
the distance between the activation matrix of each local model
and that of the global model. We visualize the distribution of
the first PCA dimension of HLBIM matrix for participating
clients and show the results in Fig. 5. Under the IID and
Gau(0.1) settings, malicious clients are clearly distinguished
from benign clients, suggesting that the hidden layers’ outputs
of backdoor and benign models differ greatly, even on benign
samples. However, under the label distribution skew settings,
we find that malicious clients are distributed closely to benign
clients. When the label distributions of the validator’s local
data and the data used to train the benign models differ,
a benign model tends to predict samples as the majority
label in its training set, which closely resembles a malicious
model prone to predicting samples as the attacker-chosen
label. Therefore, it becomes difficult to distinguish between
them. Moreover, under the quantity skew setting, we observe
significant variability in the HLBIM of benign clients. This
indicates that the quantity of samples has a considerable
impact on the training of benign models; with fewer samples,
benign models may lack adequate generalization, yielding
outputs that diverge from those of other benign models.

9) FLShield Evaluation: FLShield performs well under
most non-IID cases but fails to defend when label distribution
skew is severe (e.g., Dir(0.1) and #C = 2), with a post-defense
BA above 93%. By leveraging activation differences between
malicious and benign models on benign samples, FLShield
applies the loss impact per class (LIPC) metric to record the
average loss difference between the global model from the
previous round and the local model. Since backdoor models
tend to produce less accurate logits and higher losses, LIPC
values for malicious clients are lower. Figure 6 illustrates LIPC
value for each participating client. Under the IID and Gau(0.1)
settings, malicious clients can be easily distinguished from
benign clients. Despite correctly predicting benign samples,
the backdoor model incurs a higher loss than that of the benign

(d) #C=3

(e) #C=2 () Gau(0.1) (g) qDir(0.5)

CIFAR-10 under various non-IID settings in FLShield, where red and blue represent

TABLE VI

THE BA/MA OF SOTA DEFENSES WITH DIFFERENT MODELS APPLIED
ON CIFAR-10 UNDER VARIOUS NON-IID SETTINGS

Moded | 1D [ Dir05 | Dir0) | #C=3 |
| FLAME
2/69.46 9.15/66.22 | 91.87/58.66 7.4/64.4
425/68.26  11.54/67.15 | 83.87/57.01 | 11.33/44.23
3.58/69.89 | 66.97/68.91 | 86.95/54.33 | 55.12/49.06
FreqFed
6.64/6423  12.37/30.36
11.55/4537  5.03/27.05
597/5228 | 3234127.62
FLShield
6.12/67.78
96.77/47.92
96.86/53.92

#C=2__ | Gau(®0.) | qDir(0.5)

ResNet-18
ResNet-34
ResNet-50

6.42/31.94
0.68/31.18
92.46/24.75

3.52/70.88
3.56/69.45
3.77/70.47

6.85/73.96
12.2/74.85
16.69/74.95

ResNet-18
ResNet-34
ResNet-50

2.09/69.48
4.34/68.17
3.73/70.07

5.59/69.24
6.7/69.91
4.96/72.09

93.45/57.12
67.52/55.69
94.07/55.42

3.32/70.77
3.55/69.22
3.74/70.75

34.03/73.31
52./74.76
43.33/75.57

ResNet-18
ResNet-34
ResNet-50

5.63/69.2
5.77/69.56
5.13/72.16

93.59/59.37
93.29/59.25
95.44/58.25

99.66/31.99
99.08/30.38
98.7/32.56

3.55/70.95
3.67/69.39
3.8/70.47

3.91/74.25
4.76/75.32
4.41/75.83

2.14/69.41
4.38/68.9
3.64/70.28

model. However, under label distribution skew settings, the
benign model only fully learns the knowledge of a subset
of labels, leading to incorrect logit predictions for samples
from other classes and increased loss. When data heterogeneity
degree is low, this may not have a significant impact (cf.,
Fig. 6(b) and Fig. 6(d)). As the heterogeneity degree increases,
LIPC values of benign clients decrease, approaching those of
malicious clients (cf., Fig. 6(c) and Fig. 6(e)).

C. Investigating Learning Task Complexity Impact

We now study the impact of learning task complexity on
defense effectiveness in non-IID settings, using experimental
results from CIFAR-10, CIFAR-100, and CINIC-10.

The complexity of the learning task arises from both the
dataset and the model. The dataset factor can be further
divided into the aspects of samples and labels. From Table IV,
the defenses perform slightly worse on CIFAR-100 than on
CIFAR-10. Given that CIFAR-100 has the same number of
samples as CIFAR-10 but a larger number of labels, it suggests
that an increased number of labels makes the learning task
more difficult. Furthermore, Table IV shows that on CINIC-
10, the defenses fail in almost all cases. Although CINIC-10
has the same number of labels as CIFAR-10, it contains
4.5 times more samples with more diverse features. Conse-
quently, a larger and more diverse set of samples increases
the complexity of the learning task.
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Fig. 7. Visualization results of five FL backdoor defense methods on CINIC-10 under the IID setting.

We then proceed to experimentally examine the impact of
the model. Specifically, we extend the employed model to
ResNet-34 and ResNet-50, with results presented in Table VI.
When model architectures become more complex as well as
the number of model parameters increases, defense failures
occur more frequently. This underscores the significance of the
model as a critical factor influencing learning task complexity.

We next analyze why the learning task complexity influ-
ences the defense effectiveness of pre-aggregation detection.
Based on the premises on which the detection depends, the
nine SOTA defenses can be divided into two categories.
The first category includes FLAME, Multi-metrics, FLTrust,
FL-Defender, FoolsGold, FreqFed, and CrowdGuard, which
rely on the premise that there is consistency among either
benign clients or malicious clients, and a significant difference
between benign and malicious clients. As the learning task
grows in complexity, the convergence directions of locally
trained models become inconsistent. Hence, the distinction
between benign and malicious clients becomes obscure, mak-
ing it challenging to identify malicious clients under non-IID
settings. Such phenomenon can be observed by comparing
Fig. 2(a) and Fig. 7(a), Fig. 3(a) and Fig. 7(b), Fig. 4(a) and
Fig. 7(c), and Fig. 5(a) and Fig. 7(d).

The second category, such as FLDetector and FLShield,
relies on the assumption that benign clients outperform mali-
cious ones in certain aspect. Specifically, FLDetector assumes
that the difference between the predicted and actual updates
of benign clients is smaller than that of malicious clients,
while FLShield considers that benign models can predict more
accurate logits on benign samples than malicious models. The
complexity of learning task prevents FLDetector and FLShield
from making accurate predictions, causing the performance
of benign clients become as poor as malicious ones. This
phenomenon can be verified from a comparison between
Fig. 6(a) and Fig. 7(e).

In conclusion, the learning task affects defense effectiveness
by undermining the premises underlying the defense methods.

Finding on Learning Task Complexity. The more complex
the learning task, the more challenging it becomes to imple-
ment effective defenses under non-1ID data settings.

D. Exploring Different Non-I1ID Data Types

We then explore how various non-IID types impact defense
effectiveness, using experimental results from the six datasets.
According to the results on EMNIST, CIFAR-10, CIFAR-
100, and CINIC-10 under various non-IID settings presented
in Table IV, we can observe that these FL backdoor defense
methods perform poorly under label distribution skew settings.

When benign clients’ local data have differing label distribu-
tions, they learn from samples of different classes, increasing
the differences among them. Similarly, the differences among
malicious clients also grow. This makes it difficult to distin-
guish between benign and malicious clients. In FLDetector,
under label distribution skew, the global model fails to learn
knowledge from all benign clients’ local data. Consequently,
using the Hessian matrix computed from the global model to
predict updates for all benign clients is inaccurate, leading to
a significant gap between the predicted and actual updates of
benign clients. In FLShield, the logits of benign models tend
to bias towards the majority class in their local training sets,
resulting in high prediction loss for benign models on benign
samples with different label distributions.

Moreover, as shown in Table IV and V, some defense
methods can successfully defend against attacks under the
Dir(0.5) and #C = 3 settings, but fail under the Dir(0.1)
and #C = 2 settings. When successful defense is achieved
under all four label distribution skew settings, the TPR for
Dir(0.5) is higher than that for Dir(0.1), and the TPR for
#C = 3 is also higher than that for #C = 2. This is
because as data heterogeneity degree increases, differences in
label distribution exert a greater influence, thus narrowing the
distinction between benign and malicious clients, and making
it easier for defense methods to make misjudgments.

Finding on Label Distribution Skew. Label distribution
skew greatly degrades the effectiveness of defense methods.
The higher the degree of data heterogeneity, the poorer the
defense performance.

From the results on EMNIST, CIFAR-10, CIFAR-100,
and CINIC-10 in Table 1V, the defense performance under
Gau(0.1) setting is nearly identical to that under IID setting.
This is because, under the Gau(0.1) setting, each client’s local
data is simply augmented with Gaussian noise, which does
not affect the model learning knowledge of images and thus
has limited impact on both benign and malicious updates. We
also observe that most defense methods successfully defend
on FEMNIST, despite feature distribution skew present in
FEMNIST. This is likely due to the relatively simple learning
task inherent in FEMNIST.

Finding on Feature Distribution Skew. Both noise-based
feature distribution skew and feature distribution skew in
FEMNIST have limited impact on defense performance.

By comparing the defense results on EMNIST, CIFAR-
10, CIFAR-100, and CINIC-10 under the IID and gDir(0.5)
settings in Table IV, we find that quantity skew undermines
the defense effectiveness of FLAME, FreqFed, and Crowd-
Guard. Specifically, through comparing Fig. 2(a) and Fig. 2(g),
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Fig. 8. Impact of training hyperparameters on CIFAR-10.

Fig. 4(a) and Fig. 4(g), and Fig. 5(a) and Fig. 5(g), respec-
tively, we find that quantity skew affects defense performance
either by increasing the differences among benign clients
(i.e., CrowdGuard) or by making malicious clients close to
benign clients (i.e., FLAME and FreqFed). In the first case,
a small volume of local data on benign clients results in
benign model overfitting, making their outputs inconsistent.
While in the second case, a small amount of local data
on malicious clients causes malicious updates (or malicious
updates in the frequency domain) to be less influenced by
the backdoor, thereby narrowing the gap between benign and
malicious updates. Local data volume can affect the knowledge
learned by benign or malicious models, depending on the
evaluation metric used by defense methods. This makes the
distinction between benign and malicious clients less obvious
and diminishes the defense efficacy.

Finding on Quantity Skew. When local data volume is too
small and affects the knowledge learned by either benign or
malicious models, quantity skew leads to a decrease in the
overall performance of the defense.

Table IV shows that only FL-Defender and FoolsGold
successfully defend on LOAN. This may be attributed to the
similar label distribution across clients in LOAN, as evident
from data distribution of LOAN in Table I. Consequently, the
last FC layer of benign and malicious models is no longer
affected by label distribution, and only the last FC layer of
the malicious model is influenced by the backdoor. However,
all other defense methods fail on LOAN, suggesting that mixed
types of skew is a more challenging heterogeneous setting.

Finding on Mixed Types of Skew. The defense is more
challenging when there exist mixed types of skew.

E. Setting Various Poisoning Hyperparameters

We then examine how the poisoned data rate and local
epochs of malicious clients affect defense effectiveness under
non-IID data by setting different poisoning hyperparameters.

1) Impact of Poisoned Data Rate: We vary the PDR over
{0.1, 0.2, 0.3, 0.4, 0.5} and report the BA on CIFAR-10 under
various non-IID settings in Fig. 8(a)-8(d). As PDR increases,
BA exhibits an overall downward trend. To be specific, defense
methods, i.e., FLAME, FoolsGold, FLDetector, and FLShield
show improved performance. For instance, under the #C = 2
setting, FoolsGold completely fails to defend against the attack
when PDR is 0.2, but it successfully mitigates the attack when
PDR rises to 0.4 or 0.5. This observation suggests that a higher
PDR allows malicious updates to contain more backdoor
knowledge and makes the distinction between malicious and

benign clients more evident, thereby facilitating the detection
of malicious clients and improving defense effectiveness.

2) Impact of Local Epochs: We vary local epochs of
malicious clients over {1, 3, 6, 9} and report the BA on CIFAR-
10 in Fig. 8(e)-8(h). Hereinafter, we denote malicious clients’
local epochs as LE,,. Results show that as LE,, increases, BA
generally declines. Similar to the trends observed with varying
PDR, several defense methods, including FLAME, FreqFed,
FLDetector, and FLShield, show a particularly pronounced
decline. For example, under the #C 2 setting, FLAME
fails to defend when LE,, is 1, but successfully mitigates the
attack when LE,, increases to 3, 6 or 9. This is because, as
LE,, grows, local models of malicious clients diverge from
the global model, embedding more backdoor characteristics
in their updates, which in turn makes the distinction between
malicious and benign updates more evident.

Beyond the defense methods previously discussed, other
approaches including Multi-metrics, FLTrust, FL-Defender,
and CrowdGuard consistently yield high BA even when
increasing poisoning hyperparameters. This demonstrates that
in local updates, the impact of non-IID data significantly
outweighs that of backdoor attacks.

Finding on Training Hyperparameters. Only when the
attacker increases poisoning hyperparameters to improve the
attack success rate can the defense possibly succeed, which
implies that the defense effectiveness under non-IID settings
is not robust.

F. Case Study

We next conduct a case study to further investigate the
impact of non-IID data distribution on defense effectiveness.

As mentioned in Section II-B2, when an attacker executes
ECBA and each benign client holds samples from only a single
class (i.e., #C = 1), the behaviors of benign and malicious
clients become fundamentally indistinguishable. They assign
a specific label to their local samples, and each client’s
local samples follow distinct distributions. In other words,
any benign client cannot determine if the labels assigned to
local data by other clients are accurate, regardless of whether
those clients are benign or malicious. In this case study, we
perform experiments on CIFAR-10 using the default parameter
configurations. The BA and TPR of FedAvg as well as various
defense methods are shown in Fig. 9, while the visualization
results of some defense methods are presented in Fig. 10.

It can be observed that only FoolsGold successfully defends
against the attack, while other defense methods fail. FoolsGold
performs well because, in ECBA, malicious clients share
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Fig. 9. The BA and TPR of various defense methods against ECBA on
CIFAR-10 under #C =1 setting.

samples from the same distribution, producing highly similar
malicious updates. In contrast, benign clients’ updates differ
significantly due to heterogeneous local data. FoolsGold lever-
ages this distinction to identify malicious clients.

Figures 10(a)-10(d) shows that the significant differences
among benign clients blur the boundary between them and
malicious clients. This indicates that the amplified metrics used
by FLAME, FL-Defender, FreqFed, and CrowdGuard cannot
effectively distinguish between benign and malicious clients.
While in FLDetector and FLShield, the evaluation metrics of
benign and malicious clients exhibit a phenomenon completely
contrary to expectations. We observe that malicious clients
demonstrate higher model-update consistency than benign
clients, and the LIPC value for malicious clients is larger than
that for benign clients as illustrated in Fig. 10(e).This occurs
because under the #C = 1 setting, the global model struggles
to learn from heterogeneous benign clients and instead learns
from consistent malicious clients. Thus, the estimated Hessian
matrix can accurately predict the updates for malicious clients
in FLDetector, and malicious models incur very low losses on
malicious clients’ local samples in FLShield.

Overall, in the extreme scenario where ECBA is performed
with #C = 1, the substantial differences among benign clients
make it difficult to distinguish them from malicious clients.
With regard to those defense methods that operate under
the assumption that benign clients consistently outperform
malicious ones in certain aspects, there may even emerge
a contrary phenomenon in which malicious clients actually
appear to perform better or look superior. The only defense
that demonstrates success in this setting, namely FoolsGold,
specifically targets to exploit the consistency of malicious
clients. However, this advantage is far from robust, as it
represents a weakness that an adaptive attacker can easily
circumvent, for example, by intentionally adding random
noise to malicious updates [55] or by incorporating carefully
designed regularization strategies during local training [28],
thereby rendering the defense ineffective.

Finding on Case Study. /n some extreme non-IID scenar-
ios, the behavior of benign clients assigning labels to locally
distinct data becomes essentially indistinguishable from the
label-flipping behavior of malicious clients.

G. Exploring the Existence of Defense Boundaries

As analyzed in Section IV-F, under extreme data het-
erogeneity settings (e.g., each client having entirely distinct
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sample classes), it becomes impossible to determine whether
a client’s sample assignment is correct. Consequently, pre-
aggregation detection methods cannot effectively distinguish
malicious clients from benign but heterogeneous ones. In other
words, any defense is bound to fail when the heterogeneity
degree becomes sufficiently large.

We next empirically investigate whether there exists a clear
defense boundary beyond which the defense begins to fail as
the heterogeneity degree increases. Specifically, we construct
progressively more severe non-IID scenarios. For quantity-
based label imbalance, the number of classes per client is
varied from #C = 1 to #C = 10, while for distribution-
based label imbalance, the Dirichlet concentration parameter
is adjusted from Dir(0.1) to Dir(1.0). Table VII shows the
BA and MA of three top-performing defenses on CIFAR-
10 and CINIC-10, suggesting that such a defense boundary
consistently exists across all scenarios. For instance, FLAME
becomes ineffective once the heterogeneity level goes beyond
Dir(0.4) and #C = 1 on CIFAR-10. Moreover, for FLShield,
the boundary is infinite on CINIC-10, as it already fails to
defend under IID settings (see Table IV).

Finding on Defense Boundary. There necessarily exists a
defense boundary beyond which the defense starts to fail when
the heterogeneity degree exceeds it.

V. DISCUSSION
A. Limitations of Pre-Aggregation Defenses

The design principle of pre-aggregation detection is that the
impact of a backdoor on the local model is so significant that
it can be distinguished from benign ones. In the context of FL,
however, this impact is often less pronounced than expected
for several reasons.

First, our extensive experiments on nine state-of-the-art
(SOTA) federated learning (FL) backdoor defense methods
reveal that the impact of non-IID data sometimes outweighs
that of the backdoor itself. Despite efforts to refine their
strategies across the three steps of the defense pipeline to
distinguish between benign and malicious clients, they still fail
in many non-IID data settings. This issue becomes particularly
pronounced when learning task is more complex or when the
attacker employs smaller poisoning hyperparameters.

Second, in FL, the learning process of clients on their local
data is inherently incremental, with each uploaded update
to the server reflecting only a few epochs of local training
[56], [57]. As a result, the information contained in any
single update is quite limited, implying that a single round
of malicious contribution is unlikely to convey a sufficiently
strong backdoor signal.

Third, it remains challenging to ensure that all malicious
updates are successfully identified and filtered out in every
round. Even a single undetected poisoned update, once incor-
porated into the global model, can introduce and propagate a
backdoor to all participating clients in the subsequent round.
This contamination undermines the foundation on which
defenses rely, thereby rendering subsequent detection more
difficult.

Therefore, we hold a pessimistic view towards using pre-
aggregation defenses for mitigating backdoor attacks in FL.
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Fig. 10. Visualization results of five defense methods against ECBA on CIFAR-10.

TABLE VII

THE BA/MA OF SOTA DEFENSES ON CIFAR-10 AND CINIC-10 UNDER GRADUALLY INCREASING DEGREES OF NON-IID SETTINGS, WITH
SUCCESSFUL DEFENSE CASES MARKED OUT

Dataset Defense Setting
Dir(0.1) Dir(0.2) Dir(0.3) Dir(0.4) ‘ Dir(0.5) Dir(0.6) Dir(0.7) Dir(0.8) Dir(0.9) Dir(1.0)
FLAME | 91.87/58.66 | 75.15/60.23 | 42.08/64.59 | 44.03/65.68 9.15/66.22 14.14/69.78 7.42/68 10.58/69.6 5.1/69.13 5.86/68.58
CIFAR-10 | FreqFed | 93.45/57.12 | 23.88/61.78 5.16/66.89 5.14/67.86 5.59/69.24 5.98/69.97 5.07/69.88 7.77/69.32 4.4/69.47 6.1/69.47
FLShield | 93.59/59.37 5.81/63.08 5.03/67.08 4.9/67.85 5.63/69.2 6.06/69.99 4.79/70.06 6.28/69.54 4.31/69.68 6.07/69.6
FLAME | 99.96/62.29 | 99.89/68.79 | 99.92/72.33 | 99.85/73.99 | 99.76/75.29 | 99.68/77.47 99.22/76.91 7.83/78.06 6.12/77.98 6.63/78.2
CINIC-10 | FreqFed | 98.73/63.27 99.9/68.5 99.89/72.77 | 99.77/74.61 | 97.55/74.75 | 99.87/77.22 | 99.82/76.77 3.14/77.98 4.25/76.56 5.06/78.23
FLShield | 99.57/64.01 | 98.82/70.05 98.7/73.53 | 97.58/74.45 | 98.88/76.32 | 96.38/77.19 95.8177.25 | 98.89/78.21 | 96.29/78.14 | 97.57/78.5
#C=1 #C=2 #C=3 #C=4 #C=5 #C=6 #C=17 #C=8 #C=9 #C=10
FLAME 100/9.26 6.42/31.94 7.4/64.4 5.12/69.18 6.74/67.33 5.78/69.2 5.47/69.71 6.51/67.57 6.49/67.49 6.26/67.92
CIFAR-10 | FreqFed 100/10.01 12.37/30.36 6.64/64.23 533/69.23  5.96/69.67 5.39/69.17 5.37/69.8 6.3/67.58 6.49/67.6 6.03/68.07
FLShield | 99.71/9.85 99.66/31.99 6.12/67.78 5.88/69.39 12.4/69.95 6.08/69.17 5.91/69.75 6.82/67.57 6.89/67.62 6.15/68.07
FLAME 100/10.38 100/29.4 100/43.92 99.99/57.44 ‘ 99.98/68.6 99.95/73.61 10.16/76.53 2.93/77.31 3.98/77.59 3.82/78.62
CINIC-10 | FreqFed 98.66/9.08 99.89/28.9 99.98/44.42 | 99.99/58.94 2.63/72.88 4.23/77.18 3.4/78.2 3.18/79.59 4.84/79.59 3.83/80.58
FLShield | 97.59/10.82 | 99.69/34.94 | 99.92/49.45 | 99.87/58.05 ‘ 99.49/72.59 | 99.23/76.44 | 99.44/78.25 | 99.17/79.79 | 99.17/79.84 | 98.74/80.78

Even if more robust evaluation metrics, amplification tech-
niques, or identification mechanisms are designed in the future,
they can only marginally improve defense effectiveness with-
out fully resolving the issue of malicious and benign clients
becoming indistinguishable under non-IID data settings.

B. Takeaway Suggestions for Practitioners

1) Towards Advanced Pre-Aggregation Defenses: Fore-
going analysis reveal that no pre-aggregation detection
can consistently succeed across all scenarios. Nevertheless,
FLAME, FreqFed, and FLShield exhibit the relatively better
defense performance due to their implementation of superior
strategies at specific steps of the defense pipeline. FLShield
adopts model activations of benign samples as the evaluation
metric and uses activations from only the final layer. This
suggests that the outputs of the model on benign samples
can effectively distinguish backdoored models from benign
ones. Under non-IID settings, relying solely on activations
of the final layer outperforms using all layers, as shallow
layers primarily capture generic features where backdoored
and benign models appear more similar. For amplification
technique, FLAME and FreqFed both use peer comparison, by
building a feature vector for each local update that consists of
its pairwise distances to all other updates. This is an effective
way to amplify the distinction between malicious and benign
updates, as it performs pairwise comparisons between every
two updates. Furthermore, FLAME and FreqFed employ unsu-
pervised learning-based categorization as their identification
mechanism. Unlike predefined parameter-based selection, this
proves more effective and robust, as it can learn relative
relationships among amplified metrics and adapt to diverse

scenarios. Moreover, the adopted HDBSCAN outperforms
other clustering algorithms since it dynamically determines
the number of clusters.

Based on the above analysis, we advocate the practical use
of FLAME, FreqFed, and FLShield, particularly in real-world
scenarios with relatively mild levels of data heterogeneity.

2) Resorting to Personalized Fl Framework: In traditional
FL frameworks, all clients share a unified model via global
aggregation. For security purposes, malicious updates must
be carefully detected and thoroughly removed before or after
aggregation, which becomes particularly challenging when
client data is Non-IID. However, recent studies [58], [59], [60]
have demonstrated that in personalized FL, each client main-
tains a model customized to its local data distribution, thereby
inherently preventing malicious updates from infiltrating the
local models of benign clients. Therefore, practitioners can
consider adopting the personalized FL framework to enhance
model security. Specifically, two approaches can be imple-
mented. The first is partial model sharing, where only a subset
of parameters participate in aggregation. In this way, even
if malicious updates are incorporated into the global model,
model parameters of benign clients that do not participate in
aggregation can prevent the propagation of backdoor features.
The second is parameter refinement, in which benign clients
fine-tune the aggregated global model using their local data.
Even if the global model is compromised, the locally adapted
model gradually forgets the backdoor.

VI. LIMITATIONS

First, we primarily consider the nine most representative
FL backdoor defense methods. Although there are still many
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pre-aggregation detection methods within the FL context, we
focus on those that have demonstrated superior performance,
with each characterized by distinct detection strategies. Our
summarized defense paradigms provide a clear perspective for
evaluating more backdoor defense methods under comprehen-
sive data heterogeneity conditions.

Second, we examine two simple cases for feature dis-
tribution skew, namely, noise-based feature imbalance and
the FEMNIST dataset. While our experiments offer some
insights into how feature distribution skew impacts on defense
effectiveness, it is far from sufficient to address complex
situations in the real world. However, we anticipate that pre-
aggregation detections will encounter increased challenges
when addressing label distribution skew in practical scenarios.

Third, due to space constraints, our experiments are con-
ducted using a standard setting for each type of attack, where
the size and location of the trigger along with the target label
are kept the same. Nonetheless, since the adopted attack setting
is selected randomly, we believe that our findings can readily
be extended to a broader range of experimental scenarios.

VII. CONCLUSION

In this work, we conduct a systematic empirical study of
FL backdoor defenses under non-IID data settings. Extensive
experimental results across various datasets demonstrate that
current defenses are insufficient to effectively tackle data
heterogeneity challenges. We hope that our findings will
inspire increased attention to FL backdoor defenses and further
solutions to the inherent issues on data heterogeneity.
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