
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023 5501712

SSA: Microsecond-Level Clock Synchronization
Based on Machine Learning for IoT Devices

Zhuochen Fan , Yanwei Xu , Peng Liu , Xiaodong Li , Ruwen Zhang , Tong Yang , Member, IEEE,
Wenfei Wu , Member, IEEE, Yuqing Li , Associate Member, IEEE, Li Chen ,

and Gong Zhang , Member, IEEE

Abstract— Clock synchronization is an essential but
challenging task for internet of things (IoT) devices. The
state-of-the-art data-driven Huygens solution cannot achieve
accuracy for IoT networks, because the devices are usually weak
in power to make massive timestamp probing for data-driven
solutions. We propose the SSA clock synchronization scheme
to improve the Huygens algorithm. First, SSA has a sliding
window mechanism to accumulate data points for the data-driven
support vector machine (SVM) algorithm in Huygens, which
complements the issue of insufficient data points. Second, SSA
applies a smoothing method to the periodical estimated clock
offset and drift, which eliminates the noise introduced by the
larger sliding window. Third, SSA makes an adaptive clock
correction instead of the periodical correction in Huygens so as
to avoid correcting the clock before the algorithm could stably
estimate and smooth the clock offset and drift. We conduct
extensive experiments on a real device (Huawei Sound X), and
the results shows that our SSA can achieve synchronization
accuracy of around 20 µs in the actual working environment.

Index Terms— Adaptive correction, clock synchronization,
drift, machine learning, offset, sliding window, smoothing.

NOMENCLATURE

Symbol Meaning

t Global real-world time.
1 Device’s clock offset.
C Device’s local clock time, C = t + 1.
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D Device’s clock drift.
t s Probe packet’s sending timestamp.
tr Probe packet’s receiving timestamp.
d One-way delay (OWD).

I. INTRODUCTION

CLOCK synchronization plays a fundamental role in the
process of data collection and transmission [1], [2],

[3] for various explosively-growing internet of things (IoT)
applications, such as high-speed communications [4], [5],
[6], industrial automation [7], [8], [9], and smart healthcare
systems [10], [11], [12], etc. Specifically, synchronized clocks
can provide timestamps to decide the order of events among
multiple devices, which further decides the correctness or
performance of the above mechanisms. Thus, the granularity
of synchronization accuracy could directly affect the atop
applications and the consequent quality of user experience
(QoE) [13], [14]. For example, the clock synchronization of
the left and right channels of a smart speaker in a stereo scene
should preferably not exceed 1ms, otherwise the human ear
can discern it [15], [16], [17].

A variety of clock synchronization solutions are proposed,
which can provide accuracy at different granularity in their
own scenarios. For example, well-known schemes are network
time protocol (NTP) [18], precision time protocol (PTP) [19],
referencing broadcast synchronization (RBS) [20], time-
synchronization protocol for sensor network (TPSN) [21],
flooding time synchronization protocol (FTSP) [22], pair
broadcast synchronization (PBS) [23], datacenter time protocol
(DTP), [24], and others [10], [25], [26], while new schemes
have been proposed in recent years, such as Huygens [27],
data-plane time-synchronization protocol (DPTP) [28], multi-
hop precision time protocol (M-PTP) [29], and others [30],
[31], [32], [33], [34]. Some of them [24], [27], [28], [29],
[31] can even achieve nanosecond synchronization accuracy.
However, they are heavyweight, i.e., they incur a huge
hardware overhead or complex deployment/implementation
to work properly, which is unacceptable for common IoT
devices. For specific IoT devices1 deployed on commercial-
grade hardware, the finest granularity achievable with current

1Commercial-grade IoT devices in this article mainly refer to relatively
small devices built on traditional hardware platforms such as microprocessors
or microcontrollers [35], etc.
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clock synchronization efforts, as far as we know, is only on
the order of milliseconds (e.g., [7], [33], [34], [36], [37], [38]).

Among the clock synchronization solutions, data-driven
algorithms combine the massive data measurement and data
analytic or machine learning methods to improve the syn-
chronization accuracy. The Huygens algorithm [27] is a rep-
resentative solution that provides the state-of-the-art most
fine-grained accuracy of tens of to hundreds of nanoseconds.
The Huygens algorithm periodically measures massive data
points of probing timestamps between devices, applies support
vector machine (SVM) [39] to the data within each period to
estimate the clock offset and clock drift, and corrects the clock
according to the estimated clock offset and drift. Such a design
has shown its success in the device synchronization in a data
center environment.

However, IoT devices’ properties prevent the data-driven
approach to be applied. Essentially, the IoT devices usually
have insufficient computation/communication capabilities to
make massive measurements, but also the wireless environ-
ment and software measurement component could be rather
noisy; thus, it is challenging to apply data-driven methods to
eliminate noises in IoT device’s measurement data. We pro-
pose the SSA clock synchronization scheme to overcome
this challenge, which consists of three techniques: Sliding
Window, Smoothing, and Adaptive Correction. It inherits
Huygens’s periodical measurement, estimation, and correction
but makes three improvements as follows: 1) it introduces
a Sliding window mechanism to complement the insufficient
data points within each interval, where each window spans
multiple intervals; 2) it applies a Smoothing method to denoise
the estimation among intervals; and 3) and it Adaptively
corrects device clock based on the estimation and smoothing
result. Our prototypes and experiments show that in the
actual working environment of the smart speaker (Huawei
Sound X) with 5 GHz WiFi, the average clock offset and
drift of SSA are 19.97 µs and 0.91 µs/s, which are 5.27 and
4.90 times better than the original Huygens, respectively. The
experimental results validate the effectiveness of our three
improvements/techniques.

A. Our Key Contributions

1) Our above SSA scheme successfully adapts the original
Huygens from the data center scenario to the wireless
local area network (WLAN) scenario where ordinary
IoT devices generally work, and significantly promotes
the synchronization granularity of ordinary IoT devices:
from millisecond to microsecond level;

2) Compared with other state-of-the-art data-driven
schemes, we are the first to actually implement the
proposed solution from the algorithm/system level to
the product level.

The remaining part of this article is organized as follows.
Section II describes the latest related work, background,
and motivation of clock synchronization for IoT devices.
Section III describes the design of SSA. Section IV presents
the implementation and evaluation of SSA. And Section V
concludes this article.

II. BACKGROUND AND MOTIVATION

A. State-of-the-Arts

1) Data-Driven Methods for Clock Synchronization: In
practice, synchronization protocols are likely to suffer from
noise such as network fluctuations and queuing delays,
which significantly reduces accuracy. And researchers tried
data-driven correction methods to eliminate the noise. Huy-
gens [27] uses SVM to remove abnormal points during syn-
chronization and adopts the median values (hyperplane) as the
measured clock offset, and further obtains the drift. SLMT [30]
uses linear programming to estimate clock offset and drift,
employs temperature compensation, and assumes piecewise
linearity of the clock. To alleviate the delay asymmetry
of the internet, the M-PTP [29] calculates the distribution
of random delays based on SVM, and then utilizes the
L-estimator to estimate the offset. It requires that both nodes
to be synchronized must support PTP and be deployed on
expensive switches.

2) Hardware/Physical Methods for Clock Synchronization:
DPTP [28] implements clock synchronization on the network
data-plane by designing programmable switching ASICs, but it
requires expensive hardware support. Sundial [31] utilizes spe-
cialized hardware to provide a failure-tolerant periodic clock
synchronization that restores back-up clocks by performing
fast failure detection. Graham [32] builds a failure model based
on the physical properties of the local clock and the desired
synchronization accuracy, and fits enough data points collected
from large-scale commodity sensors to further improve the
accuracy.

3) Clock Synchronization for IoT Devices: At present, there
are very few clock synchronization mechanisms specifically
proposed for ordinary IoT devices, and they can almost achieve
millisecond granularity. For example, some work [33], [36],
[37] achieves granularity of around tens of milliseconds,
while others [7], [34], [38] can achieve a synchronization
fine-grained range of about 0.1–1 ms with better hardware
assistance.

Summary: We enumerate some of the above state-of-the-
art clock synchronization schemes for comparison in Table I,
where hardware requirements refer to the hardware require-
ments (combined price and deployment cost, etc.) to achieve
the synchronization granularity shown. Although some of them
can reach the granularity of tens of nanoseconds, the hardware
constraints of ordinary IoT devices do not allow them to reach
such accuracy.

B. Preliminaries of Huygens

1) Clock Offset and Drift: We use the symbols in Nomen-
clature to elaborate the clock synchronization. IoT devices use
quartz crystal oscillator to count time. When the oscillator
does not work in the proper environment (e.g., temperature and
humidity), its resonance frequency changes, causing inaccurate
time counting. And this time counting inaccuracy is called
clock drift D. The clock drift accumulates over time, resulting
in a clock offset 1. Their relationship is

1(t) =

∫ t

t0
D(x)dx + 1(t0). (1)
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TABLE I
COMPARISON BETWEEN STATE-OF-THE-ART SYNCHRONIZATION SCHEMES

Fig. 1. Derivation process of two devices exchanging timestamps to measure
clock offset.

2) Timestamp Probing (Fig. 1): The clock synchronization
protocol needs devices to probe each other (device-to-device).
When device A probes device B, the probing packet leaves
device A at A’s clock time t s and arrives at B at B’s clock
time tr . Thus, we have the one-way delay (OWD) from A
to B

dAB =
(
tr

− 1B
(
tr))

−
(
t s

− 1A
(
t s)).

We define the relative clock offset between A and B as
1AB = 1A − 1B . Note that 1AB = −1B A, and 1AB varies
with time due to clock drift accumulation.

We further make two assumptions: 1) tr and t s are close so
that 1B(tr ) ≈ 1B(t s) and 2) the OWD in the two directions
between A and B are the same, i.e., dAB = dB A, denoted as d.
The formula above is rewritten as(

t s
− tr)

= 1AB
(
t s)

− d.

On the reverse path, each probe from B to A follows the
formula: (

tr
− t s)

= 1AB
(
t s)

+ d.

3) Huygens Algorithm [27]: In the Huygens algorithm,
each probe from A to B would generate a data point x = t s

and y = (t s
− tr ), and each one from B to A generates x = t s

and y = (tr
− t s). The two sets of data points fall into two

parts in the xy plane with a distance 2d. Fig. 2 shows the
measurement results of the two sets. In the short measurement
period, 1AB(t s) can be viewed as a straight line (i.e., clock
drift D(t) does not have bursty variation). Thus, the Huygens
algorithm applies soft-margin SVM [40] to find the two border
lines of the two sets [from A to B and from B to A in (1)] and
the center line between the two border lines over a 2-s interval.
The distance d can be calculated from the distance between
lines, the clock offset 1AB(t) (at time t) can be calculated
from the line, and the clock drift is the slope of the line.

Fig. 2. SVM processing calculation diagram of the Huygens algorithm
(figures taken from Geng et al. [27]). (a) Data not filtered by coded probing.
(b) Data filtered by coded probing.

The Huygens algorithm has an optimization—coded
probing—to eliminate noisy data points. When one device
probes another one, it sends two consecutive packets and gets
four device clock timestamps: 1) packet 1 with t s

1 and tr
1

and 2) packet 2 with t s
2 and tr

2 , as shown in Fig. 3. The
coded probing check whether two sending timestamps and two
receiving timestamps’ differences |(tr

2 −tr
1 )−(t s

2 −t s
1)| is farther

than a threshold ϵ, if the difference exceeds ϵ, the data points
are discarded as noise; otherwise, both data points are counted
in the SVM algorithm.

C. WLAN Clock Synchronization: Challenge

The synchronization of IoT devices in WLAN scenarios
has two properties. First, the timestamp probing in WLAN
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Fig. 3. Coded probing of the Huygens algorithm.

scenarios is noisy. In the wireless channel, the probing sig-
nal can be disturbed by the channel noise; IoT devices
are exposed to open environments, and their quartz crys-
tal oscillators can be influenced by environmental condi-
tion such as temperature and humidity [26]. Inside the
devices, the clock read/write are software based, which
could also be disturbed by the device operating system
(OS) scheduling. Second, IoT devices are weak in com-
putation and communication [41], [42], and it is difficult
for them to generate frequent and stable probing in limited
time [27], [43], [44].

The two properties create a dilemma for the data-driven
algorithms. Therefore, data-driven algorithms need to periodi-
cally measure timestamps and eliminate noise. But the length
of the periodical measurement interval is hard to decide. If the
measurement interval is too short, IoT devices cannot generate
sufficient data points for the data-driven algorithm, causing the
intra-interval estimation to be inaccurate; if the measurement
interval is too large, the IoT device may not be in a stable state
(i.e., having clock drift variation), the average estimation of a
long interval cannot stand for the instantaneous estimation at
the end of the interval.

D. Our Proposed Solution

We propose SSA to overcome the challenge. SSA is a
combination of three improvements for Huygens—Sliding
window, Smoothing, and Adaptive correction. SSA makes
periodic measurement, estimation, and correction like Huy-
gens. To overcome the issue of insufficient data point within
each interval, it introduces a sliding window mechanism to
collect more data for the SVM-based estimation. The sliding
window looks backward to previous intervals and accumulate
sufficient data points for SVM. However, the sliding window
may introduce cross-interval noise, thus SSA further applies
data smoothing to the per-interval estimation from SVM. SSA
applies linear regression for this smoothing.

Finally, even with the sliding window, the device still takes
a while to accumulate data points in the beginning and after
resetting the clock drift. With sufficient data points, per-
interval SVM-based estimation can be stable. SSA checks
the standard deviation of the clock drift estimation in past
intervals, and adaptively chooses to correct the clock only
when the standard deviation is small.

E. Tool: SVM

SVM is a powerful supervised learning algorithm for linear
and nonlinear classification. A linear SVM is provided by the
set of data points (xi , li )(1 ≤ i ≤ N ), where xi is R2, and li is
a binary label, i.e., the “upper bound point” or “lower bound
point” in Fig. 2. SVM classifies points with similar labels, and
its goal is to find a hyperplane so that the distance from it to
the nearest data point of each label is maximized.

In this article, we use SVM to “naturally” (non-artificial
labeling) distinguish the two classes of data points generated
by the two probing directions, namely “upper bound point”
and “lower bound point.” Note that these two sets of probes
are on different devices, and their measurements are not shared
with each other: each device measures independently and does
not perform duplicated calculations. Since noise is likely to
cause these two classes of data points to be mixed together,
we can ensure the accuracy of SVM by tuning the SVM
parameter svmC to denoise and separate the two classes of
data points. svmC illustrates the tolerance/elasticity of the
SVM model to misclassification (i.e., failure to distinguish two
classes of data points). The larger svmC, the less error-tolerant
the model, but overfitting may occur; the smaller svmC, the
more error-tolerant the model, but underfitting may occur. See
Section IV-B for the experiments of its impact.

III. SSA SYNCHRONIZATION ALGORITHM

A. Overall Workflow

We divide the workflow of SSA into three main steps:
1) time slicing and estimation of clock offset and drift;
2) smooth clock offset and drift; and 3) adaptive correction
of clock frequency. The details are as follows.

1) Step 1: In SSA, the time is discretized into multiple
time slices. Within each time slice, coded probing
is applied to collect data points similar to Huygens
(see Section II-B for details). At the end of each time
slice, the sliding window mechanism is used to accu-
mulate data points, and the SVM algorithm is applied to
estimate the clock offset and drift. The raw measurement
data points and the estimated clock offset and drift are
stored in the database.

2) Step 2: Next, SSA smooths the estimated clock offset
and drift. After the measurement and estimation of
a time slice ending at time t , the algorithm fetches
the estimation in previous intervals and applies linear
regression [45]. In this way, smoothed offset and drift
are the points on the regressed line at t , which are later
stored in the database.

3) Step 3: Then, SSA computes the standard deviation of
the smoothed clock drift in the current and past few
intervals. If the standard deviation is small and less
than a predefined threshold: it indicates that sufficient
data points have been collected and the result is well
denoised. Therefore, the clock is corrected; otherwise,
the clock is not corrected.

In Sections III-B–III-D, we describe the three techniques
corresponding to the above three steps, respectively.
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Fig. 4. Example of sliding time slices. Through sliding window technique,
even if each interval has only 250 sets of data, 1000 sets of data can be
provided for each processing.

B. Sliding Window Technique

Huygens is deployed in data center networks with strong
computing power. It chooses the measurement slice/interval to
be 2 s, so a large number of data points can be generated in
each interval. However, common IoT devices lack resources
to provide such frequent probes, resulting in an insufficient
number of timestamps for the SVM algorithm to guarantee
measurement accuracy. For example, the Huawei Sound X [46]
can only achieve 250 probes within an interval of 2 s during
normal work, unless we are willing to consume a lot of
computing resources to make more probes. In particular, when
more than two devices are to be synchronized, more sparse
data points have to be dealt with as one device (acting as a
server) has to send/receive data with multiple devices at the
same time.

In SSA, devices send probes as fast as they can, and still
apply coded probing to filter noisy probes. At the end of each
interval, our algorithm looks backward to a window in early
intervals until the accumulated data points in the previous
neighboring intervals is sufficient for the SVM algorithm. SSA
then use SVM to compute the clock offset and drift at the end
of the interval, which is called the estimated clock offset and
drift.

As shown in the Fig. 4, suppose we need to provide
1000 sets of timestamp data per interval when using inde-
pendent time slices. Through the sliding window technique,
we only need to provide 250 sets of data in each interval.
However, it is necessary to combine the data in multiple
intervals in the calculation. For example, when calculating the
clock offset and drift of the fourth interval in the fifth interval,
the sliding window needs to use a total of 1000 sets of data for
the first–fourth interval. Specifically, as shown in Fig. 5, the
timestamp batch-processing based on sliding window includes
the following three steps.

1) In the current time slice, k probings are performed
between the probing device and the probed device, and
four timestamps are generated during each probing to
indicate the sending and receiving time of the packet on
the two devices. The number of probings k depends on
the amount of data required for SVM training and the
length of the time slice. Then, we use the coded probing
to filter the k groups of timestamp data, and the filter
threshold is set according to the probing frequency.

Fig. 5. Process of timestamps batch-processing based on sliding time slices.

2) The timestamps collected in the current time slice should
be corrected according to the cumulative clock correc-
tion value recorded in the time slice database before
processing, restored to the value when the clock was not
corrected, and then stored in the timestamp database.

3) Take a certain amount of timestamps from the timestamp
database according to the amount of data required for
training, and then use these data to calculate the clock
offset 1 and drift D (estimated clock offset and drift),
and the calculation results are stored in the time slice
database after smoothing.

C. Smoothing Technique

A longer sliding window may introduce more noise, result-
ing in inaccurate data obtained, which may cause fluctuations
and instability of the clock offset and clock drift calculated by
each time slice. Therefore, SSA applies linear regression [45]
to smooth the calculation results, i.e., use the clock offset
values of the last several time slices/intervals to calculate the
clock offset and drift of the current interval, which will be
used as a basis for clock correction.

As shown in Fig. 6, SSA first obtains the clock offset
11, 12, . . . ,1m of the last m time slices/intervals from the
time slice database, and the start time of the time slice t1, t2,
. . ., tm . Then, these data are linearly regression processed with
the clock offset 10 and the start time t0 of the current time
slice. Taking the time t of each time slice as the independent
variable and the clock offset 1 as the dependent variable,
linear regression is used to obtain the regressed clock offset
line. Based on this, the newly smoothed clock offset 1∗

0 at
the end of the current time slice is obtained, and the ratio of
the regressed line D∗

o is the clock drift. Finally, SSA stores
the smoothed data of the current time slice in the time slice
database, and performs clock correction accordingly.

D. Adaptive Correction Technique

Clock offset correction refers to modifying the time of
the device, and clock drift correction refers to adjust the
device time counting frequency so as to compensate the drift
difference between two clocks. In most solutions, the clock
correction is operated periodically together with the offset and
drift estimation.

In SSA, the clock correction is more complicated. When
the system boots up, the sliding window cannot accumulate
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Fig. 6. Process of smoothing measurement results using linear regression.

Fig. 7. Process of clock adaptive correction is mainly realized by flexibly
setting offset threshold TO and drift threshold TD .

sufficient data points, causing the SVM and the smoothing
not to be able to denoise effectively. In this case, it is not
proper to correct the clock. A good intuition is to check the
stability of the clock drift first (lower standard deviation means
less noise), and correct the clock when the drift is stable.

Thus, the overall clock correction is as follows (Fig. 7). The
algorithm checks in the standard deviation of the smoothed
clock drift within a short duration and a long duration. There
are three cases: 1) if the standard deviation StdD in the
short duration (ND intervals) is smaller than a threshold TD

(i.e., stable), both the clock offset and clock drift are corrected;
2) otherwise, the standard deviation StdO in the long duration
(NO intervals is checked with a threshold TO . If StdO is
smaller than TO (i.e., relatively stable), the clock offset is
corrected (but the clock drift is not); and 3) if both StdD and
StdO exceed their thresholds, the clock is not corrected.

Note that if the clock drift is corrected, i.e., Case 1, the slid-
ing window should not span intervals before drift correction.
And there would not be sufficient data points problem in near
future to make a window, and the algorithm is reset and warms
up again. If the clock offset is correct, i.e., Case 2, when the
sliding window still accumulates data point between intervals,
but it would apply the offset correction to data points in early
intervals (before the correction) so that all data points in an
SVM calculation have the same time counting baseline.

IV. EVALUATION

A. Experimental Settings

1) Implementation: We directly evaluate the SSA synchro-
nization algorithm in the Huawei’s smart speaker product—
Huawei Sound X [46]. In particular, Huawei Sound X (Linux)
has a 32 bit ARMV7 with 900 MHz frequency, supports

Fig. 8. Impact of the type of timestamp acquisition, where soft type is
stable much earlier.

802.11 a/b/g/n/ac WLAN in 2.4/5 GHz dual frequency,2 and
Bluetooth 5.0. All code was implemented in C++. Our exper-
imental evaluation includes parameter tuning and system-
synthetic experiments (i.e., under real Huawei Sound X
working conditions).

2) Evaluation Metrics: For parameter tuning, we only use
clock drift measurements. For system-synthetic experiments,
we use both clock offset and drift measurements.

3) Baseline: The original Huygens algorithm [27], dis-
abling our SSA with three techniques.

B. Results of Parameter Experiments

1) Impact of the Type of Timestamp Acquisition: It also
determines the type of clock adjustment. This experiment
compares two types: soft (network-card-driven timestamp),
emu (user mode timestamp). The difference between them
is that the availability of soft timestamp is based on the
actual situation of the network card on the host, while emu
timestamps can be supported by any host. As shown in Fig. 8,
the soft type is obviously more stable than the emu type.
Therefore, we must choose soft type in system synthetic
experiments.

2) Impact of SVM Parameter (svmC): It is the elastic
parameter (also called penalty parameter in SVM) for calcu-
lating the clock offset. Since it is not a sensitive parameter,
we take svmC = 0.01, 0.1, 1, 10 as empirical values to better
observe its impact through this experiment. As shown in Fig. 9,
the drift at svmC = 0.1 tends to stabilize at the earliest,
followed by the drift at svmC = 1. Additionally, the drift
at svmC = 0.01 is the latest to stabilize, while the drift
at svmC = 10 fluctuates the most. Therefore, we choose
svmC = 0.1.

25 GHz WiFi has a larger bandwidth than 2.4 GHz WiFi and may perform
more stable, because Bluetooth also has a 2.4 GHz frequency band, which
may cause interference to IoT devices working under 2.4 GHz WiFi at the
same time.
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Fig. 9. Impact of svmC, where svmC = 0.1 is the earliest stable.

Fig. 10. Impact of win_len, and we choose win_len = 2000.

3) Impact of the Length of the Sliding Window (win_len):
It is the number of timestamps recorded. As shown in Fig. 10,
when win_len equals 2000 or 3000, the drift is stable at the
earliest. If this value is too large or too small, it will obviously
affect the stability of drift because it involves packet sending
speed. This will be explained later [see the analysis of (3)–(5)].
Therefore, we choose win_len = 2000.

4) Impact of epoch: It represents the length of each time
slice, with the unit being seconds (s). This experiment is based
on the fact that we must collect enough timestamps to ensure
stability. As shown in Fig. 11, clock drift with epoch = 20
shows the earliest and most stable convergence. Therefore,
we choose epoch = 20.

5) Impact of the (Packet Sending) speed: Its unit is
packet per second (PPS). It can be obtained by calculating
speed=1/delay, where delay represents the time interval
between two consecutive probe packets sent by the host

Fig. 11. Impact of epoch, where epoch = 20 converges the earliest.

Fig. 12. Impact of speed, and we choose speed = 71.4 for the reasons
in Fig. 13.

(unit is µs). As shown in Fig. 12, clock drift with speed =

285.7 shows the earliest and most stable convergence. How-
ever, when the speed = 285.7, the corresponding CPU usage
is also the largest (no matter in the system state or the user
state), as shown in Fig. 13. In fact, there is an upper limit
to the speed. If the speed becomes faster, the number of
timestamps in each time slice will be higher. At this time, the
offset will be calculated faster, causing the system to converge
and stabilize earlier. However, too fast speed also means that
a large number of timestamps are collected in a short time
(larger win_len), which in turn will put a heavy burden on
the CPU and cause drift/offset quality degradation. Therefore,
after considering the CPU usage and synchronization accuracy,
we choose speed = 71.4 (i.e., delay = 14 000 µs here)
with the smallest CPU usage.
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Fig. 13. Impact of the CPU load rate when speed varies, where
speed = 71.4 has the minimum CPU usage.

Fig. 14. Impact of TO , where TO = 3 is the earliest stable.

Analysis of 3)–5): Our requirement for SSA is not only
to ensure drift/offset stability, but also to ensure that a result
can be output in a short interval to adjust the clock, which
is also one of the ideal conditions for clock synchronization.
In fact, if the packet sending speed is too fast, it will
cause instability. This is the essential reason for using sliding
windows.

6) Impact of the Offset Threshold TO : It is an impor-
tant component of clock adaptive correction, as shown in
Section III-D, with the unit being µs. In this experiment,
we fix the drift threshold TD = 0, i.e., not adjusting TD .
Then we use five different TO values (TO = 0.1, 0.5, 1, 3, 5)
to observe the effect on clock offset. As shown in Fig. 14,
when TO = 0.1, 0.5, 1, the offset is very unstable and jitter is
obvious; when TO = 3, the offset is the most stable. Therefore,
we choose TO = 3. In fact, the difference of TO affects the
speed of convergence, but these offsets finally converge to
around 40 µs.

7) Impact of the Drift Threshold TD: It is also an impor-
tant component of clock adaptive correction, as shown in
Section III-D, with the unit being µs/s. In this experiment,
we fix the offset threshold TO = 3 according to the above TO

Fig. 15. Impact of TD , where TD = 3 is the earliest stable. (a) Offset.
(b) Drift.

experiment, and use three different TD values (TD = 0.5, 1, 3)
to observe the effect on both clock offset and drift. As shown
in Fig. 15(b), when TD = 3, clock drift is the most stable.
Correspondingly, as shown in Fig. 15(a), when TD = 3, the
clock offset is obviously the smallest on average. Therefore,
we choose TD = 3. We find that the values of these offsets
are significantly smaller than those in Fig. 14. This is because
the frequency has been adjusted [Fig. 7 (left)], i.e., when
the drifts are 0 in Fig. 15(b). The reason for frequency
adjustments is based on TD , to make the stabilized offset more
accurate.

Analysis of 6) and 7): According to Fig. 7, the threshold is
variable. We do not expect the frequency to be adjusted all the
time, which leads to instability of the clock. Therefore, during
the entire adaptive correction process, the drift adjustment is
getting slower, but the offset has been constantly adjusted
to avoid the accumulation of offset errors. In short, adaptive
correction allows the clock frequency and offset to be quickly
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Fig. 16. Impact of the connection status, where the working environment
with Bluetooth connected and playing music at the same time is stable earlier.

Fig. 17. In the actual working environment, the clock drift of SSA is
obviously lower than that of the Huygens. (a) 2.4 GHz + BLT + music.
(b) 5 GHz + BLT + music.

adjusted after the system is started, so that the error can be
quickly reduced to a small value.

Fig. 18. In the actual working environment, the CDF of SSA is obviously
closer to the y-axis and performs better than that of the Huygens. (a) Drift.
(b) Offset.

8) Impact of the Connection Status of the Smart Speaker:
Our default smart speaker is working under 2.4/5 GHz WiFi.
In this experiment, we observe the impact of drift connecting
to Bluetooth (BLT) and playing music under default condi-
tions. As shown in Fig. 16, we find that clock drift is stable
earlier than the default setting when connecting to BLT and
playing music, i.e., it seems to work better in a real working
environment.

Discussion of Convergence: Parameters 1)–8) are different
in sensitivity to convergence/stable time. Specifically, we can
roughly sort their sensitivity according to the time values of
each parameter in Figs. 8–16 when they all converge under
different values as follows: 7) ≈ 6) ≫ 2) > 4) > 5) >

3) ≈ 8) > 1). 6) and 7) are the most sensitive because they
are the key parameters that determine the adaptive correction
(Section III-D) of the clock. If they are not tuned properly, the
clock will be adjusted for a long time. Similarly, 2) and 4),
which are second only to 6) and 7) in sensitivity, are also
directly linked to our sliding window and smoothing tech-
niques (Sections III-B and III-C). In general, the tuning of
convergence-sensitive parameters needs to be handled with
caution.

C. Results of System-Synthetic Experiments

We select the optimal parameters for system-synthetic
experiments based on the results of the above-mentioned
parameter tuning. In this experiment, we show the final clock
drift and clock offset under the full firepower of SSA and
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Fig. 19. In the actual working environment, the clock offset of SSA is
basically lower than that of the Huygens. (a) 2.4 GHz + BLT + music.
(b) 5 GHz + BLT + music.

observe how much our proposed SSA improves the Huygens
clock synchronization scheme.3

1) Results of Clock Drift: As shown in Fig. 17, the experi-
mental results show that the clock offset of SSA has obvious
advantages compared with Huygens: the offset of SSA has
already stabilized at a small value, but the offset of Huygens
has not been stable and the value is always relatively large.
For the 2.4 GHz + BLT + music scenario, the drift of
SSA stabilizes at an average of 0.835 µs/s after about 144 s
of system startup. The average of all its drift is 1.30 µs/s,
which is 3.03 times better than Huygens. For the 5 GHz +

BLT + music scenario, the drift of SSA stabilizes at an
average of 0.331 µs/s after about 156 s of system startup.
The average of all its drift is 0.91 µs/s, which is 4.90 times
better than Huygens. For the comparison of different scenarios
of SSA, the drift of 2.4 GHz + BLT + music stabilizes
earlier than that of 5 GHz + BLT + music, but the value

3For a fair comparison, the first or first two or three consecutive large offset
and corresponding drift values of SSA and Huygens when the system is just
started are not included in the calculation of the average and CDF, because
the offset values at these moments may be previous accumulation.

of 5 GHz + BLT + music is significantly smaller when
it stabilizes. In Fig. 18(a), we find the drift distribution of SSA
is significantly closer to the y-axis, which also proves SSA has
better clock drift.

2) Results of Clock Offset: As shown in Fig. 19, the
experimental results show that the clock offset of SSA is still
higher than that of Huygens as a whole. For the 2.4 GHz
+ BLT + music scenario, the average of all its offset is
19.96 µs, which is 2.37 times better than Huygens. For the
5 GHz + BLT + music scenario, the average of all its
offset is 19.97 µs, which is 5.27 times better than Huygens.
For the comparison of different scenarios of SSA, the off-
set variability trends of 2.4 GHz + BLT + music and
5 GHz + BLT + music are similar, but 2.4 GHz +

BLT + music fluctuates more obviously. What they have in
common is that their offset values fluctuate slightly at about
10 µs in the end, and the best values are 0.135 µs (135 ns)
and 0.859 µs (859 ns), respectively. Fig. 18(b) shows that the
offset distribution of SSA is also closer to the y-axis, proving
that SSA has better synchronization accuracy than Huygens.

V. CONCLUSION

Clock synchronization is fundamental, and its granularity
is important. Among the clock synchronization solutions, the
data-driven algorithms have attracted widespread attention in
improving synchronization accuracy, and the state-of-the-art
is the Huygens algorithm. However, directly adapting the
Huygens algorithm to IoT devices is challenging. To address
the problem, we propose an accurate microsecond-level clock
synchronization, namely SSA, for IoT devices. We conduct
extensive experiments with the Huawei Sound X in the actual
WiFi-connected working environment. Experimental results
show that SSA can achieve synchronization accuracy of
around 20 µs.

ACKNOWLEDGMENT

The authors would like to thank their editor(s), and the
anonymous reviewers for their thoughtful feedback.

REFERENCES

[1] Y. Wu, X.-Y. Li, Y. Liu, and W. Lou, “Energy-efficient wake-up
scheduling for data collection and aggregation,” IEEE Trans. Parallel
Distrib. Syst., vol. 21, no. 2, pp. 275–287, Feb. 2010.

[2] K. Fan, S. Sun, Z. Yan, Q. Pan, H. Li, and Y. Yang, “A blockchain-
based clock synchronization scheme in IoT,” Future Gener. Comput.
Syst., vol. 101, pp. 524–533, Dec. 2019.

[3] Y. Liu, J. Li, and M. Guizani, “Lightweight secure global time synchro-
nization for wireless sensor networks,” in Proc. IEEE Wireless Commun.
Netw. Conf. (WCNC), Apr. 2012, pp. 2312–2317.

[4] L. Beltramelli, A. Mahmood, P. Österberg, M. Gidlund, P. Ferrari, and
E. Sisinni, “Energy efficiency of slotted LoRaWAN communication
with out-of-band synchronization,” IEEE Trans. Instrum. Meas., vol. 70,
pp. 1–11, 2021.

[5] P. Yadav, J. A. McCann, and T. Pereira, “Self-synchronization in duty-
cycled Internet of Things (IoT) applications,” IEEE Internet Things J.,
vol. 4, no. 6, pp. 2058–2069, Dec. 2017.

[6] Y.-H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka,
“RT-WiFi: Real-time high-speed communication protocol for wireless
cyber-physical control applications,” in Proc. IEEE 34th Real-Time Syst.
Symp., Dec. 2013, pp. 140–149.

[7] S. Viswanathan, R. Tan, and D. K. Y. Yau, “Exploiting power grid for
accurate and secure clock synchronization in industrial IoT,” in Proc.
IEEE Real-Time Syst. Symp. (RTSS), Dec. 2016, pp. 146–156.

Authorized licensed use limited to: Wuhan University. Downloaded on April 02,2023 at 13:38:25 UTC from IEEE Xplore.  Restrictions apply. 



FAN et al.: SSA: MICROSECOND-LEVEL CLOCK SYNCHRONIZATION BASED ON MACHINE LEARNING 5501712

[8] P. Ferrari, A. Flammini, E. Sisinni, S. Rinaldi, D. Brandão, and
M. S. Rocha, “Delay estimation of industrial IoT applications based
on messaging protocols,” IEEE Trans. Instrum. Meas., vol. 67, no. 9,
pp. 2188–2199, Sep. 2018.

[9] B.-Y. Ooi and S. Shirmohammadi, “The potential of IoT for instrumen-
tation and measurement,” IEEE Instrum. Meas. Mag., vol. 23, no. 3,
pp. 21–26, May 2020.

[10] A. Araujo et al., “Wireless measurement system for structural health
monitoring with high time-synchronization accuracy,” IEEE Trans.
Instrum. Meas., vol. 61, no. 3, pp. 801–810, Mar. 2012.

[11] T. Lindh, J. Wåhslén, I. Orhan, and D. Sturm, “Performance evaluation
of time synchronization and clock drift compensation in wireless per-
sonal area networks,” in Proc. 7th Int. Conf. Body Area Netw., 2012,
pp. 153–158.

[12] V. Jagadeeswari, V. Subramaniyaswamy, R. Logesh, and V. Vijayakumar,
“A study on medical Internet of Things and big data in personalized
healthcare system,” Health Inf. Sci. Syst., vol. 6, no. 1, pp. 1–20,
Dec. 2018.

[13] A. De Angelis, P. Carbone, E. Sisinni, and A. Flammini, “Performance
assessment of chirp-based time dissemination and data communications
in inductively coupled links,” IEEE Trans. Instrum. Meas., vol. 66, no. 9,
pp. 2474–2482, Sep. 2017.

[14] Z. Yuan, T. Bi, G. M. Muntean, and G. Ghinea, “Perceived synchroniza-
tion of mulsemedia services,” IEEE Trans. Multimedia, vol. 17, no. 7,
pp. 957–966, Jul. 2015.

[15] D. T. Kemp, “Stimulated acoustic emissions from within the human
auditory system,” J. Acoust. Soc. Amer., vol. 64, no. 5, pp. 1386–1391,
1978.

[16] R. C. Waters, “Time synchronization in spline,” MERL, Cambridge,
MA, USA, Tech. Rep. TR96-09, 1996.

[17] T. Picton, “Hearing in time: Evoked potential studies of temporal
processing,” Ear Hearing, vol. 34, no. 4, pp. 385–401, 2013.

[18] D. L. Mills, “Internet time synchronization: The network time protocol,”
IEEE Trans. Commun., vol. 39, no. 10, pp. 1482–1493, Oct. 1991.

[19] J. C. Eidson, M. Fischer, and J. White, “Standard for a precision
clock synchronization protocol for networked measurement and control
systems,” in Proc. 34th Annu. Precis Time Time Interval Syst. Appl.
Meet., 2002, pp. 243–254.

[20] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” ACM SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, pp. 147–163, Dec. 2002.

[21] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks:
A survey,” IEEE Netw., vol. 18, no. 4, pp. 45–50, Jul. 2004.

[22] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time
synchronization protocol,” in Proc. 2nd Int. Conf. Embedded Networked
Sensor Syst., Nov. 2004, pp. 39–49.

[23] H. Dai and R. Han, “TSync: A lightweight bidirectional time syn-
chronization service for wireless sensor networks,” SIGMOBILE Mobile
Comput. Commun. Rev., vol. 8, no. 1, pp. 125–139, Jan. 2004.

[24] K. S. Lee, H. Wang, V. Shrivastav, and H. Weatherspoon, “Globally
synchronized time via datacenter networks,” in Proc. ACM SIGCOMM
Conf., Aug. 2016, pp. 454–467.

[25] G. Giorgi and C. Narduzzi, “Performance analysis of Kalman-filter-
based clock synchronization in IEEE 1588 networks,” IEEE Trans.
Instrum. Meas., vol. 60, no. 8, pp. 2902–2909, Aug. 2011.

[26] M. Akhlaq and T. R. Sheltami, “RTSP: An accurate and energy-efficient
protocol for clock synchronization in WSNs,” IEEE Trans. Instrum.
Meas., vol. 62, no. 3, pp. 578–589, Mar. 2013.

[27] Y. Geng et al., “Exploiting a natural network effect for scalable, fine-
grained clock synchronization,” in Proc. USENIX Symp. Networked Syst.
Des. Implement., 2018, pp. 81–94.

[28] P. G. Kannan, R. Joshi, and M. C. Chan, “Precise time-synchronization
in the data-plane using programmable switching ASICs,” in Proc. ACM
Symp. SDN Res., Apr. 2019, pp. 8–20.

[29] K. He, C. An, J. H. Wang, T. Li, L. Zu, and F. Li, “Multi-hop precision
time protocol: An internet applicable time synchronization scheme,” in
Proc. IEEE/IFIP Netw. Operations Manage. Symp., Apr. 2022, pp. 1–9.

[30] H. Puttnies, E. Schweissguth, D. Timmermann, and J. Schacht, “Clock
synchronization using linear programming, multicasts, and temperature
compensation,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2019, pp. 1–6.

[31] Y. Li et al., “Sundial: Fault-tolerant clock synchronization for data-
centers,” in Proc. USENIX Symp. Oper. Syst. Des. Implement., 2020,
pp. 1171–1186.

[32] A. Najafi and M. Wei, “Graham: Synchronizing clocks by leveraging
local clock properties,” in Proc. USENIX Symp. Networked Syst. Des.
Implement., 2022, pp. 453–466.

[33] Z. Yu, C. Jiang, Y. He, X. Zheng, and X. Guo, “Crocs: Cross-technology
clock synchronization for WiFi and ZigBee,” in Proc. EWSN, 2018,
pp. 135–144.

[34] R. Hofmann, D. Grubmair, C. A. Boano, and K. Römer, “X-Sync:
Cross-technology clock synchronization among off-the-shelf wireless
IoT devices,” in Proc. IEEE 46th Conf. Local Comput. Netw. (LCN),
Oct. 2021, pp. 115–122.

[35] M. Tortonesi et al., “Leveraging Internet of Things within the military
network environment—Challenges and solutions,” in Proc. IEEE World
Forum Internet Things (WF-IoT), Dec. 2016, pp. 111–116.

[36] S. K. Mani, R. Durairajan, P. Barford, and J. Sommers, “An architecture
for IoT clock synchronization,” in Proc. 8th Int. Conf. Internet Things,
Oct. 2018, pp. 1–8.

[37] S. Wang, Y. Hou, F. Gao, and S. Ma, “A novel clock synchronization
architecture for IoT access system,” in Proc. 2nd IEEE Int. Conf.
Comput. Commun. (ICCC), Oct. 2016, pp. 1456–1459.

[38] D. Resner, A. A. Fröhlich, and L. F. Wanner, “Speculative precision time
protocol: Submicrosecond clock synchronization for the IoT,” in Proc.
IEEE 21st Int. Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2016,
pp. 1–8.

[39] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Jan. 1995.

[40] Q. Wu and D. Zhou, “SVM soft margin classifiers: Linear program-
ming versus quadratic programming,” Neural Comput., vol. 17, no. 5,
pp. 1160–1187, May 2005.

[41] L. Fanucci et al., “Sensing devices and sensor signal processing for
remote monitoring of vital signs in CHF patients,” IEEE Trans. Instrum.
Meas., vol. 62, no. 3, pp. 553–569, Mar. 2012.

[42] G. Mois, S. Folea, and T. Sanislav, “Analysis of three IoT-based wireless
sensors for environmental monitoring,” IEEE Trans. Instrum. Meas.,
vol. 66, no. 8, pp. 2056–2064, Aug. 2017.

[43] C. Lenzen, P. Sommer, and R. Wattenhofer, “PulseSync: An efficient
and scalable clock synchronization protocol,” IEEE/ACM Trans. Netw.,
vol. 23, no. 3, pp. 717–727, Jun. 2014.

[44] H. Kim, X. Ma, and B. R. Hamilton, “Tracking low-precision clocks
with time-varying drifts using Kalman filtering,” IEEE/ACM Trans.
Netw., vol. 20, no. 1, pp. 257–270, Feb. 2011.

[45] X. Yan and X. G. Su, Linear Regression Analysis: Linear Regression
Analysis: Theory and Computing. Singapore: World Scientific, 2009.

[46] (2023). Huawei Sound X. [Online]. Available: https://consumer.huawei.
com/en/speakers/sound-x/

Zhuochen Fan received the Ph.D. degree in com-
puter science from Peking University, Beijing,
China, in 2023, under the supervision of Tong Yang.

He has published papers the IEEE Real-Time
Systems Symposium (RTSS), IEEE International
Conference on Data Engineering (ICDE), IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, the International Conference on Par-
allel Processing (ICPP), the IEEE International Con-
ference on Network Protocols (ICNP), etc. His
research interests include network measurements,

data stream processing and algorithms, and clock synchronization.

Yanwei Xu received the Ph.D. degree in computer
science from Tongji University, Shanghai, China,
in 2012.

He is currently a Senior Researcher with the
Theory Laboratory, Huawei Hong Kong Research
Center, Hong Kong. His main research interests
include lie in software defined networks, network
measurements, and clock synchronization.

Authorized licensed use limited to: Wuhan University. Downloaded on April 02,2023 at 13:38:25 UTC from IEEE Xplore.  Restrictions apply. 



5501712 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

Peng Liu received the B.S. and M.S. degrees in
computer science from Peking University, Beijing,
China, in 2018 and 2021, respectively.

He has participated several articles in network
area, advised by Tong Yang. His research interests
include networks and data stream processing.

Xiaodong Li received the B.E. degree in the internet
of things (IoT) engineering from the University of
Science and Technology, Beijing, China, in 2019.
He is currently pursuing the M.S. degree in com-
puter science with the Peking University Shenzhen
Graduate School, Shenzhen, China.

His research interests include mainly focus on data
stream processing and programmable switches.

Ruwen Zhang received the B.S. degree in math-
ematics from Peking University, Beijing, China,
in 2021, where he is currently pursuing the master’s
degree, under the supervision of Tong Yang.

He has participated several articles in network
area. His research interests include networks and
data stream processing.

Tong Yang (Member, IEEE) received the Ph.D.
degree in computer science from Tsinghua Univer-
sity, Beijing, China, in 2013.

He has visited the Institute of Computing Technol-
ogy, Chinese Academy of Sciences (CAS), Beijing.
He is currently an Associate Professor with the
School of Computer Science, Peking University,
Beijing. He has published papers in The Conference
of the ACM Special Interest Group on Data Com-
munication (SIGCOMM), The ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining

(KDD), The Conference of the ACM Special Interest Group on Management
of Data (SIGMOD), The USENIX Symposium on Networked Systems Design
and Implementation (NSDI), USENIX ATC, ICDE, VLDB, INFOCOM,
ICNP, IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE TRANSAC-
TIONS ON COMPUTERS, and IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS. His research interests include network measurements,
sketches, IP lookups, Bloom filters, and KV stores.

Dr. Yang is currently an Associate Editor of Knowledge and Information
Systems.

Wenfei Wu (Member, IEEE) received the Ph.D.
degree in computer science from the University of
Wisconsin–Madison, Madison, WI, USA, in 2015.

He was an Assistant Professor with the Institute
for Interdisciplinary Information Sciences, Tsinghua
University, Beijing, China. He is currently an Assis-
tant Professor with the School of Computer Science,
Peking University, Beijing. He has published papers
in The Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM), The
ACM SIGKDD Conference on Knowledge Discov-

ery and Data Mining (KDD), The USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), The ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), The IEEE International Conference on Computer Communica-
tions (INFOCOM), The ACM International Conference on Emerging Net-
working Experiments and Technologies (CoNEXT), The IEEE International
Conference on Distributed Computing Systems (ICDCS). IEEE/ACM TRANS-
ACTIONS ON NETWORKING, and IEEE TRANSACTIONS ON COMPUTERS.
His research interests include the information infrastructure for distributed
applications, such as machine learning, cloud computing, and big data.

Dr. Wu has served as the TPC Co-Chair for ICNP 2022 and 2021, IM 2021,
and SIGCOMM 2020 and 2019 Poster and Demo.

Yuqing Li (Associate Member, IEEE) received the
B.S. degree in communication engineering from
Xidian University, Xi’an, China, in 2014, and
the Ph.D. degree in electronic engineering from
Shanghai Jiao Tong University, Shanghai, China, in
2019.

From 2019 to 2020, she was a Post-Doctoral
Fellow with The Hong Kong University of Science
and Technology, Hong Kong. From 2020 to 2022,
she was a Researcher with the Huawei Hong
Kong Research Center, Hong Kong. She is cur-

rently an Associate Professor with the School of Cyber Science and
Engineering, Wuhan University, Wuhan, China. Her current research
interests include cloud/edge computing, network measurement, distributed
machine learning, data privacy and security, and algorithmic network
economics.

Li Chen received the B.E., M.Phil., and Ph.D.
degrees from The Hong Kong University of Science
and Technology (HKUST), Hong Kong, in 2011,
2013, and 2018, respectively.

He is currently a Researcher with the Zhong-
guancun Laboratory, Beijing, China. His research
interests include data center networks, distributed
systems, parallel computing, AI and machine learn-
ing, and OAM.

Gong Zhang (Member, IEEE) is a Chief Researcher
Scientist in future network architecture of Huawei
2012 Labs. He was a Senior Researcher, leading
future internet research and cooperative communica-
tion, and did Mobility research program since 2005.
In 2009, he is a Principal Researcher in charge of
advance network technology research department,
leading researches of future network, distributed
computing, Database system and data analysis. He
proposed stream-based research system in network
to maintain network and find added value for carries.

He was a Principal Researcher, leading system group in data mining and
machine learning since 2012. He is over 18 years Research experience of
system architect in Network, distributed system and communication system.
He had contributed more than 90 patents globally. His major research
directions are network architecture and large-scale distributed system.

Authorized licensed use limited to: Wuhan University. Downloaded on April 02,2023 at 13:38:25 UTC from IEEE Xplore.  Restrictions apply. 


