
Learning-Aided Computation Offloading for
Trusted Collaborative Mobile Edge Computing

Yuqing Li , Xiong Wang , Xiaoying Gan ,Member, IEEE, Haiming Jin ,

Luoyi Fu , and Xinbing Wang , Senior Member, IEEE

Abstract—Cooperative offloading in mobile edge computing enables resource-constrained edge clouds to help each other with

computation-intensive tasks. However, the power of such offloading could not be fully unleashed, unless trust risks in collaboration are

properly managed. As tasks are outsourced and processed at the network edge, completion latency usually presents high variability

that can harm the offered service levels. By jointly considering these two challenges, we propose OLCD, an Online Learning-aided

Cooperative offloaDing mechanism under the scenario where computation offloading is organized based on accumulated social trust.

Under co-provisioning of computation, transmission, and trust services, trust propagation is performed along the multi-hop offloading

path such that tasks are allowed to be fulfilled by powerful edge clouds. We harness Lyapunov optimization to exploit the spatial-

temporal optimality of long-term system cost minimization problem. By gap-preserving transformation, we decouple the series of

bidirectional offloading problems so that it suffices to solve a separate decision problem for each edge cloud. The optimal offloading

control can not materialize without complete latency knowledge. To adapt to latency variability, we resort to the delayed online learning

technique to facilitate completion latency prediction under long-duration processing, which is fed as input to queued-based offloading

control policy. Such predictive control is specially designed to minimize the loss due to prediction errors over time. We theoretically

prove that OLCD guarantees close-to-optimal system performance even with inaccurate prediction, but its robustness is achieved at

the expense of decreased stability. Trace-driven simulations demonstrate the efficiency of OLCD as well as its superiorities over prior

related work.

Index Terms—Mobile edge computing, multi-hop cooperative offloading, trust propagation, completion latency variability

Ç

1 INTRODUCTION

RECENT years havewitnessed the explosive growth of data
generated at the network edge,mainly driven by the pro-

liferation of Internet of Things [1]. The failure to guarantee
low latency and location-awareness undercuts the ability of
traditional cloud computing solutions [2]. Mobile edge com-
puting (MEC) is emerging as a new compelling computing
paradigm by pushing cloud computing capabilities closer to
end users, underpinning a variety of computation-intensive
yet latency-sensitive applications, such as face recognition,
natural language processing and interactive gaming [3], [4],
[5]. As a result, it is estimated that over 90 percent of the data
will be stored or processed at the network edge [6]. However,
the limited resources available to individual edge clouds
(e.g., small cell base stations or WiFi access points) remain to
be the biggest obstacle [7], [8]. Although there exist a few
works for offloading computation tasks exceeding edge

clouds’ capacity to the remote cloud [9], [10], relying on a sin-
gle edge cloud significantly limitsMECperformance.

By exploiting cooperations among edge clouds, MEC
enables resource-constrained edge clouds to help each
other with computation-intensive tasks, catering to user
heterogeneous demands [11], [12]. Cooperative offloading
services often assisted by virtualization technologies real-
ize more flexible workload and resource sharing within
specific geographic regions. While having received signif-
icant attention recently, existing solutions mostly make a
simplifying assumption that tasks can be offloaded only
once rather than being offloaded further [8], [13]. In con-
trast, we focus on the multi-hop case that allows tasks to
be offloaded multiple hops away. Compared to 1-hop
case with limited number of physical neighbors, multi-
hop offloading would be more promising in exploiting
collaborative computing capabilities, since it can offload
tasks to more powerful edge clouds that lie beyond 1-hop
neighbors [14], [15].

Despite the clear advantages, trust risks in MEC collabora-
tion create tremendous difficulties for fully reaping benefits
of multi-hop offloading. Acting as both resource requester
and provider, edge clouds are often owned and deployed by
self-interested individuals (e.g., home/enterprise owners)
concerned about limited computing resources. In practice,
edge clouds expect to offload tasks to powerful neighbors, but
as providers, they may refuse to support offloading services
or deliberately throttle resources only to provide low-quality
services, if possible. Such uncooperative strategic behaviors

� Y. Li, X. Wang, H. Jin, L. Fu, and X. Wang are with the School of
Electronic Information and Electrical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China. E-mail: {liyuqing, wangxiongsjtu,
jinhaiming, yiluofu, xwang8}@sjtu.edu.cn.

� X. Gan is with the School of Electronic Information and Electrical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China,
and also with the National Mobile Communications Research Laboratory,
Southeast University, Nanjing 211189, China.
E-mail: ganxiaoying@sjtu.edu.cn.

Manuscript received 28 Dec. 2018; revised 26 June 2019; accepted 3 Aug.
2019. Date of publication 14 Aug. 2019; date of current version 3 Nov. 2020.
(Corresponding author: Xinbing Wang.)
Digital Object Identifier no. 10.1109/TMC.2019.2934103

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020 2833

1536-1233� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0816-5777
https://orcid.org/0000-0003-0816-5777
https://orcid.org/0000-0003-0816-5777
https://orcid.org/0000-0003-0816-5777
https://orcid.org/0000-0003-0816-5777
https://orcid.org/0000-0002-1343-0339
https://orcid.org/0000-0002-1343-0339
https://orcid.org/0000-0002-1343-0339
https://orcid.org/0000-0002-1343-0339
https://orcid.org/0000-0002-1343-0339
https://orcid.org/0000-0001-5200-1409
https://orcid.org/0000-0001-5200-1409
https://orcid.org/0000-0001-5200-1409
https://orcid.org/0000-0001-5200-1409
https://orcid.org/0000-0001-5200-1409
https://orcid.org/0000-0002-3790-3743
https://orcid.org/0000-0002-3790-3743
https://orcid.org/0000-0002-3790-3743
https://orcid.org/0000-0002-3790-3743
https://orcid.org/0000-0002-3790-3743
https://orcid.org/0000-0001-7796-9168
https://orcid.org/0000-0001-7796-9168
https://orcid.org/0000-0001-7796-9168
https://orcid.org/0000-0001-7796-9168
https://orcid.org/0000-0001-7796-9168
https://orcid.org/0000-0002-0357-8356
https://orcid.org/0000-0002-0357-8356
https://orcid.org/0000-0002-0357-8356
https://orcid.org/0000-0002-0357-8356
https://orcid.org/0000-0002-0357-8356
mailto:
mailto:
mailto:

in the long run, may provoke trust crisis of confidence in
neighbors’ cooperation, thereby suppressing efficiency of off-
loading services [16], [17]. To the best of our knowledge, [18]
and [19] are the only results that explicitly build social trust
relationships to identify trustworthy edge clouds. However,
they typically consider either static trust-based interactions,
or cooperative offloading confined within one hop. In this
work, we will explore the benefits of multi-hop cooperative off-
loading that relies on accumulated social trust relationships.

We particularly identify two major challenges in design-
ing an efficient trusted collaborative MEC paradigm, both
of which are addressed in this paper.

The first major challenge comes from variability of comple-
tion latency, which can harm the offered service levels. As
the basis of offloading decision making, completion latency
has received increasing attention in performance evaluation
of MEC services. An extensive body of research on latency
minimization has emerged [8], [13], [14], [15], most of which
implicitly assumes that completion latency can be deter-
mined in advance. Such practice leads to tractable analysis,
but fails to capture latency variability, which is common-
place in practical distributed computing systems [20]. As
tasks are outsourced and processed at the network edge,
completion latency usually presents high variability mainly
due to different workload levels or resource contention in
virtualized environments [21]. This introduces a heavy bur-
den on performing efficient cooperative offloading control.

The second challenge is on co-provisioning of computation,
transmission and social trust services, which distinguishes the
trusted cooperative offloading of interest from prior offload-
ing solutions that manage only the former two services [13],
[14], [15]. By exploiting cooperations among edge clouds,
tasks are allowed to be offloaded multiple hops away to
reduce computation latency but at the expense of increased
trust risks and transmission latency. One critical issue of
trusted cooperative offloading is how to strike a good balance
among computing power, radio access and social trust resour-
ces, so as to optimize the quality of services. This brings new
modeling requirements for incorporating interplay and inter-
dependency among themanagement of these three resources.

By jointly considering the above challenges, we develop
an online learning-aided cooperative offloading mechanism
called OLCD. A salient contribution of our approach is that,
multi-hop offloading is organized based on accumulated
social trust, which, combined with predictive computing
capabilities, provides users with high quality of services. We
harness Lyapunov optimization to exploit spatial-temporal
optimality of long-term cost minimization problem. OLCD is
devoted to an efficient online offloading control policy by
addressing the assignment problem for each edge cloud:

how to assign available computing capabilities to tasks for
the minimum system cost in terms of latency and trust risks?
However, such offloading control can not materialize with-
out complete latency knowledge. To adapt to latency vari-
ability, OLCD resorts to the delayed online learning
technique to predict task completion latency, which is used
for the basis of offloading decision making. By co-provision-
ing of computation, transmission and trust services, the opti-
mal offloading decisions obtained via a reduced minimum
costmaximumflowproblem, are expected to achieve latency
versus trust risk tradeoff. To encourage high-quality service
offerings, accumulated trust update is performed by aggre-
gating locally-generated results of completed tasks to yield
global trust values for cooperative edge clouds.

Our main contributions are highlighted as follows.

� We propose OLCD, an online learning-aided cooper-
ative offloading mechanism, where trust propaga-
tion is performed along multi-hop offloading path to
explore collaborative computing capabilities. To the
best of our knowledge, we’re the first to explore the
benefits of multi-hop cooperative offloading in MEC by
taking into account both completion latency variability
and trust risks in collaboration.

� Specifically, a long-term cost minimization problem
with co-provisioning of computation, transmission
and trust services is formulated. By gap-preserving
transformation, we decouple the series of bidirec-
tional offloading problems so that it suffices to solve
a separate decision problem for each edge cloud.
With the aim of minimizing the loss due to predic-
tion errors over time, OLCD adapts the delayed
online learning technique to facilitate completion
latency prediction, which is fed as input to Lyapu-
nov-based cooperative offloading control. An
expected regret bound is proven as compared to the
best static predictor. We theoretically prove that
OLCD guarantees close-to-optimal system perfor-
mance and robustness to prediction errors.

� We evaluate the performance of OLCD with real-
world traces from Google cluster. Our results show
that OLCD outperforms prior related work and
approaches near-optimal performance, even under
workload prediction errors. Moreover, it’s suggested
that high-intensity trust propagation can yield a per-
formance boost in cost reduction.

In what follows, we describe the system model and for-
mulate the trusted cooperative offloading problem in
Sections 2 and 3. To proceed, we propose an online learn-
ing-aided multi-hop offloading mechanism in Section 4.
Trace-driven simulations are performed in Section 5. In
Section 6, we briefly review related work. Finally, we
conclude the paper and future work in Section 7.

2 SYSTEM MODEL

We describe the system model for each of components in the
trusted cooperative offloading, as shown in Fig. 1. Table 1
lists themajor notations and descriptions used in this paper.

2.1 Collaborative MEC System

Consider the trusted collaborative MEC system consisting
of a set NN ¼ 1; . . . ; Nf g of densely deployed edge clouds.

Fig. 1. An illustration of the trusted cooperative offloading for MEC.

2834 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

Endowed with cloud-like computing capacity, each edge
cloud is associated with an access point (e.g., small cell base
station, WiFi access point) covering a dedicated local area,
and serves a set II ¼ 1; 2; . . .f g of user-generated computa-
tion-intensive tasks1 in the area. Suppose edge clouds in the
neighborhood (e.g., A, B and C in Fig. 1) are connected by
backhaul links, which can be used to send task requests or
responses between edge clouds [7]. By exploiting coopera-
tions among edge clouds, tasks that arrive at one edge cloud
can be either processed locally, or offloaded to non-local edge
clouds via backhaul links for high-quality services.2 Different
from most existing one-hop offloading works, a task can be
offloaded multiple hops away and finally fulfilled by power-
ful edge clouds. Notice that our mechanism is also compati-
ble with edge cloud-to-cloud offloading strategy [9] (i.e.,
offloading edge clouds’ unsatisfied computation tasks to the
remote cloud) but along with high transmission latency and
huge bandwidth costs. The system runs in a time-slotted
fashion for making decisions, i.e., t 2 TT ¼ 0; . . . ; T � 1f g,
where the slot (e.g., 1-5 minutes) is a much slower time scale
than that of task arrival and offloading.

2.2 Social Trust Model

Of particular importance is that multi-hop cooperative off-
loading relies on accumulated social trust relationships to
identify trustworthy edge clouds. We introduce social trust
model captured by directed graph G ¼ ðNN;EEÞ, where
EE ¼ fðn;mÞ : enm ¼ 1; 8n;m 2 NNg. enm ¼ 1 if and only if
edge clouds n and m have positive trust value with each
other, where the trust value perceived by n is denoted by
vnmðtÞ 2 ½0; 1�, characterizing the confidence that n has in
m’s direct cooperation at slot t based on historical interac-
tions. Here “direct” suggests that social trust relationships
are built upon physical relationships,3 i.e., two edge clouds

that are physically unreachable have no trust relationships
and that have positive mutual trust value are bound to be
physical neighbors. Due to heterogeneity in edge clouds’
computing capability, vnmðtÞ may not equal vmnðtÞ. Let
NNn ¼ fmjenm ¼ 1; 8m 2 NN n fngg � NN denote n’s trusted
neighbor set, capturing the set of edge clouds that it can
directly interact with (i.e., physical neighbors with positive
trust value). Consider the trusted MEC service provider
who is responsible for dynamic trust management includ-
ing trust value update and trusted neighbor set update. Spe-
cifically, add a new edge cloud to NNn when it builds trust
relationship with n, and delete edge clouds from NNn if they
miss positive social trust.

As shown in Fig. 1, social trust relationships among edge
clouds can be leveraged to facilitate cooperative offloading.
For example, since eAB > 0 and eBC > 0, computation
workloads in edge cloud A can be offloaded to edge cloud
B, and finally processed in lightly-loaded edge cloud C.
Here physical neighbors A and C miss positive mutual trust
(i.e., eAC ¼ 0) due to lack of good recent interactions, and
thus the workload cannot be directly offloaded from A to C.

2.3 Multi-Hop Task Offloading via Trust
Propagation

Mobile users randomly arrive at the system by submitting
task requests with diverse deadline and trust demands.4 Each of
them connects to the edge cloud that covers its vicinity.5

Formally, the task corresponding to user i 2 II can be speci-
fied by a tuple �i; gi; ti0; b

i; si
� �

, where �i 2 ½�min; �max� is task
size (in bits) that needs to be offloaded, and computation
intensity gi 2 ½gmin; gmax� is number of CPU cycles for proc-
essing one-bit task. Upon arriving at slot ti0 2 TT , user i
reports the desired deadline bi and social trust si, capturing
the maximum completion latency and trust risks in collabo-
ration that i can tolerate.

For every task, each associated edge cloud can either
directly finish it (i.e., local computing), or forward it to
another trusted edge cloud in NNn (i.e., cooperative offload-
ing). Repeat this process and the multi-hop offloading path
is formed finally. For any task i 2 II, we use variable
K 2 f0; 1; . . .g to capture how many hops i is offloaded in
total. As shown in Fig. 2, user i first connects to local edge

TABLE 1
Major Notations

Notation Description

II; i; NN; n set and index of users and edge clouds

�i; gi task size, computation intensity of task i

ti0; b
i; si arrival time, deadline and trust demand of task i

NNi;NNn i’s contributing edge cloud set, n’s trusted neighbor set

din, ’ computation latency, backhaul transmission latency

En;Bnm local computing capacity, offloading capacity

vmnðtÞ;Wi
n trust value, cumulative trust value at n

ainðtÞ, rinðtÞ admission decision variable, processing rate

ai
nðtÞ; binmðtÞ local computing/offloading decision variables

anðtÞ; bnðtÞ workloads dispatched to the Edge-B and offloaded away

QF
n ðtÞ; QB

n ðtÞ the Edge-F and Edge-B task queues of n

rd; rs weighting cost parameters of latency and social trust

DC
n ðtÞ; DT

n ðtÞ computation/transmission latency cost

CðtÞ, SnðtÞ system cost, trust risk cost

Fig. 2. Top: trust propagation along multi-hop offloading path. Bottom:
online offloading control for any intermediate edge cloud (Edge-F: Front-
end server, Edge-B: Back-end cluster).

1. In the rest of this paper, we will use “user” and “task”
interchangeably.

2. We focus on cooperative offloading among edge clouds, where
user requests are entirely offloaded from end devices to requesting
edge clouds.

3. We consider the case with fixed physical connections among edge
clouds, i.e., physical relationships remain the same. While taking into
account trust risks in collaboration, both trust value and trusted neigh-
bor set will be updated based on interaction results, i.e., social trust
relationships are always changing.

4. Users usually have heterogeneous service requests regardless of
whatever applications. Thus, we won’t make any distinction among
MEC applications. In particular, to satisfy user diverse deadline and
trust demands has promoted the development of deadline-aware [22]
and trust-aware [23] scheduling solutions.

5. We focus on the cooperative offloading case without user mobil-
ity. The effect of user mobility on offloading control will be discussed
in Section 4.6.

LI ET AL.: LEARNING-AIDED COMPUTATION OFFLOADING FOR TRUSTED COLLABORATIVE MOBILE EDGE COMPUTING 2835

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

cloud ni
0 2 NN , and then its task request is offloaded K hops

to edge cloud ni
K for processing. Let NNi denote the set of

edge clouds contributing to the offloading service for user i,
and pi ¼ fni

0; . . . ; n
i
Kg denote the permutation of all K þ 1

edge clouds along the offloading path. Under social trust
relationships, trust propagation is performed along multi-
hop offloading path. For simplicity, we denote the cumula-
tive trust value of k-hop edge cloud ni

k as
Wi

k ¼Wi
ni
k

; 8k 2 f0; . . . ; Kg. That is,

Wi
k ¼

1� @½ �vni
k�1n

i
k
ðtikÞ �Wi

k�1; if k > 0;

vi
0ðti0Þ; if k ¼ 0;

(
(1)

where @ 2 ½0; 1Þ is the decaying factor that decreases the
trust value when the number of offloading hops increases,6

tik is the time that task i is assigned to edge cloud ni
k, and

vi
0ðti0Þ is the trust value between i and requesting edge

cloud ni
0 at slot t

i
0.

Taking trusted cooperative offloading illustrated in Fig. 1
for example, user i submits task request to edge cloud A at
slot ti0 with trust value vi

Aðti0Þ, and then the task is offloaded
to edge cloud B at slot ti1 and finally processed in edge
cloud C at slot ti2. Hence, for this offloading service, offload-
ing hop number K ¼ 2 and the total cumulative trust value
Wi

C ¼ vi
Aðti0ÞvABðti1ÞvBCðti2Þ.

2.4 Online Control for Edge Clouds

Given the multi-hop offloading path shown in Fig. 2, let’s
take a closer look at any intermediate edge cloud, and learn
how cooperative offloading functions. Similar to cloud data-
centers [24], each edge cloud consists of two parts, front-end
server (Edge-F) and back-end cluster (Edge-B), where Edge-
F is responsible for task admission and scheduling, and
Edge-B utilizes provisioned computing resources to process
tasks dispatched from Edge-F. These stochastic control pro-
cesses, together with time-varying task arrivals, may bring
about dynamics of workloads in Edge-F and Edge-B. We
apply queueing theory to handle such dynamics.

We consider the distributed scenario where edge clouds
coordinate their online control strategies in an autonomous
way. Each edge cloud n 2 NN maintains two task queues,
whose backlogs7 QF

n ðtÞ and QB
n ðtÞ capture the amount of

workloads queued in Edge-F and Edge-B at the beginning of
slot t. The optimal cooperative offloading control cannot
materialize without complete backlog information among
edge clouds. Due to trust risks in collaboration, edge clouds
would prefer to interact with their trusted neighbors. That is,
edge clouds are expected to share backlog information with
peers in trusted neighbor set. At each slot, edge clouds serve
both interaction results and communication traffic data.
Since the size of the former is usually small and constant, it is
acceptable to assume that interaction results can be

transmitted to edge clouds immediately and the associated
overhead/delay can be ignoredwithout affecting online con-
trol. Thus, we only consider communication traffic data later.

2.4.1 Online Control for Edge-F

1) Task Admission: At each slot, heterogenous task requests
arrive at the system. Denote IIðtÞ � II as the set of tasks
newly arrived at slot t. The instantaneous demand of user
i 2 IIðtÞ for edge cloud n can be described as Ai

nðtÞ ¼
�i1fni

0
¼ng. The amount of workloads admitted into the

Edge-F of n is anðtÞ ¼
P

i2IIðtÞ a
i
nðtÞ, where 0 � ainðtÞ � Ai

nðtÞ
suggests that not all tasks are allowed in the system so as to
prevent system overload. The task admission decisions for
the whole system can thus be given by vector aaðtÞ ¼
fainðtÞ; 8i 2 IIðtÞ; n 2 NNg.

2) Task Scheduling: In addition to admitting locally
arrived tasks, the Edge-F, under multi-hop offloading, also
receives tasks offloaded from others. The next control is to
determine which tasks are processed locally or offloaded to
trusted neighbors, corresponding to local computing and
cooperative offloading.

For each task i 2 QQF
n ðtÞ, we use ai

nðtÞ ¼ f0; 1g to denote
whether i is dispatched to edge cloud n’s Edge-B. Obvi-
ously, ai

nðtÞ ¼ 1 represents that i is finally offloaded to n
and its multi-hop offloading path ends, and ai

nðtÞ ¼ 0 other-
wise. The amount of workloads dispatched from n’s Edge-F
to Edge-B is thus

anðtÞ ¼
X

i2QQF
n ðtÞ

�iai
nðtÞ: (2)

We introduce the binary variable bi
nmðtÞ to capture coopera-

tive offloading decisions, where binmðtÞ ¼ 1 represents that
edge cloud n offloads task i to trusted neighbor m 2 NNn at
slot t, i.e., m will be added to i’s offloading path, and
binmðtÞ ¼ 0 otherwise. The links between edge clouds are
assumed to be error-free, since the wired backhaul links are
typically reliable and only require simple channel coding
with substantially lower complexity than computation-
intensive tasks [15]. Thus, the backhaul transmission latency
does not involve complicated encoding and decoding.
According to [25], the transmission latency of the backhaul
is proportional to the size of traffic data with scaling factor
’. Then we obtain the unprocessed workloads offloaded
away from n, i.e.,

bnðtÞ ¼
X

i2QQF
n ðtÞ

X
m2NNn

�ibi
nmðtÞ: (3)

The task scheduling decisions in the whole system can be
given by ssðtÞ ¼ fai

nðtÞ;bi
nmðtÞ; 8i 2 QQF

n ðtÞ;m 2 NNn; n 2 NNg.

2.4.2 Online Control for Edge-B

The Edge-B processes tasks dispatched from Edge-F. The
computing capability captured by processing rate largely
depends on two aspects: workloads and computing resour-
ces. Let &nðtÞ denote edge cloud n’s service limitation which
is determined by available resources at slot t. We introduce
net present value function [4] to expound the relationship
between processing rate and workload/resource levels,
which is proven to fit measurement results [26]. The proc-
essing rate (in CPU cycles per second) can be computed by

6. The decaying factor is introduced to control weights of trust value
by the “distance” (i.e., offloading hop number) between edge clouds,
making the weights assigned to short-distance neighbors larger than
long-distance ones. Accordingly, cumulative trust value is monotoni-
cally decreasing with the distance, suggesting edge clouds would pre-
fer short-distance neighbors to help with task processing, especially
under trust risks. The effect of decaying factor on trusted cooperative
offloading performance is further studied in Section 5.

7. We use QQF
n ðtÞ to denote the set of tasks associated with QF

n ðtÞ. The
same is withQQB

n ðtÞ and QB
n ðtÞ.

2836 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

rnðtÞ ¼ 1
y x

&nðtÞ�QB
n ðtÞ, where x 2 ð1;1Þ controls the skewness

of the relationship between processing rate and workload/
resource levels, and y captures the speed when Edge-B is
fully loaded. Under the sameMEC system structure, param-
eters x and y are identical to all edge clouds. The heteroge-
neity in computing capability primarily comes from
differences in workload/resource levels. Intuitively, the less
workloads and the more available resources, the larger
processing rate will be.

Our study highlights the intriguing role of fair-share
scheduling, which has gained growing attention recently. In
particular, Rate Control Protocol (RCP) scheduling has been
developed as an adaptive fair-share solution, where every
router assigns the same rate to all requests and updates the
rate approximately once per slot [27], [28]. Compared to pri-
ority-based scheduling, RCP guarantees that all task
requests buffered in the same Edge-B share the same resour-
ces without preemption, thus making requests finish as
quickly as possible while staying stable and fair among
requests. For any task i 2 QQB

n ðtÞ, the amount of its work-
loads processed at slot t under RCP scheduling can be
described as

rinðtÞ ¼ min
rnðtÞ

gijQQB
n ðtÞj

; �ið:; tÞ
()

; (4)

where �ið:; tÞ ¼ �i �P
n2NN

Pt�1
t¼0 r

i
nðtÞ denotes the residual

workloads at the beginning of slot t. Users will leave the

system as soon as their computation tasks are completely

served, i.e., �ið:; tÞ ¼ 0. Let din 2 ð0; dC;max� denote the latency
when task i is served in edge cloud n. Due to different

workload levels or resource contention [21], the computa-

tion latency usually presents high variability, making it

unknown until the task is finished. We thus incorporate

online learning into multi-hop offloading mechanism in

Section 4, to predict completion latency knowledge.

2.4.3 Task Queues

We adopt the convention that task scheduling and process-
ing at slot t happen at the beginning of the slot, while task
acceptance (i.e., admitting tasks arrived locally or offloaded
from neighbors/Edge-F) happens at the end [29]. Accord-
ingly, the queueing dynamics of task queues, QF

n and QB
n ,

associated with any edge cloud n 2 NN can be described as

QF
n ðtþ 1Þ ¼ maxfQF

n ðtÞ � anðtÞ � bnðtÞ; 0g þ anðtÞ þ
X
m2NNn

bmnðtÞ;

(5)

QB
n ðtþ 1Þ ¼ max QB

n ðtÞ �
X

i2QQB
n ðtÞ

rinðtÞ; 0
8<
:

9=
;þ anðtÞ; (6)

where bmnðtÞ ¼
P

i2QQF
mðtÞ �

ibi
mnðtÞ is the amount of work-

loads offloaded to n from trusted neighborm 2 NNn. The first

term on the right-hand-side (RHS) of (5) captures the unpro-

cessed workloads in Edge-F at slot t after part of workloads

are offloaded away or dispatched to Edge-B, and the last

two terms describe the workloads arrived locally and off-
loaded from trusted neighbors. The first term on the RHS of

(6) denotes the unprocessed workloads in Edge-B after part

of workloads are processed.

3 PROBLEM FORMULATION

By exploring collaborative computing potentials, the
desired trusted cooperative offloading mechanism does the
best effort to serve tasks while providing users with quality
of service (QoS) guarantee. We focus on the QoS perfor-
mance in terms of trust risks and completion latency
(including transmission and computation latency). In partic-
ular, beneficial offloading, user trust demand and edge
clouds’ scheduling capacity constraints are respected.

3.1 Constraints of The Problem

1) Scheduling Exclusion Constraint: For task i queued in Edge-
F, edge could n can either process it or offload it to one of
trusted neighbors unless keeping it waiting in queueQF

n , i.e.,

ai
nðtÞ þ

X
m2NNn

bi
nmðtÞ � 1; 8i 2 QQF

n ðtÞ; n 2 NN: (7)

2) Beneficial Offloading Constraint: The decision of edge
cloud n that offloads task i 2 QQF

n ðtÞ to trusted neighbor
m (i.e., bi

nmðtÞ ¼ 1) is beneficial if offloading to m does not
incur higher completion latency than local computing, i.e.,

dim þ ’�i � din; 8i 2 QQF
n ðtÞ;m 2 NNn; n 2 NN; (8)

where ’ > 0 is a coefficient representing the backhaul
transmission latency for one-bit task, and din is the computa-
tion latency for task iwhen processed in n.

3) Trust Demand Constraint:Multi-hop offloading relies on
social trust relationships. This constraint enforces that task i
can be offloaded from edge cloud n to its neighborm at slot t
(i.e., bi

nmðtÞ ¼ 1), if the resulting cumulative trust value Wi
m

for offloading tom satisfies user trust demand si, i.e.,

Wi
m ¼ 1� @½ �vnmðtÞ �Wi

n � si; 8i 2 QQF
n ðtÞ;m 2 NNn; n 2 NN: (9)

Remark. Constraints (8) and (9) suggest that cooperative
offloading control is performed under the concept of ben-
eficial offloading and trusted offloading, which is vital to
providing high QoS. On this basis, a tradeoff between
completion latency and trust risks is established accord-
ingly. It’s true that 1-hop offloading is superior for low
trust risk and low transmission latency, but that is not the
whole story. Recall that MEC paradigm is proposed for
computation-intensive tasks, i.e., computation latency is
usually large, especially for resource-constrained edge
clouds. In multi-hop case, however, tasks are more likely
to be offloaded to powerful edge clouds lying beyond
physical neighbors, thus realizing a huge decrease in
computation latency only at the expense of slightly
increased trust risks and transmission latency.

4) Scheduling Capacity Constraint:We highlight the limited
scheduling capacity of edge clouds as follows:X

i2QQF
n ðtÞ

ai
nðtÞ � En; 8n 2 NN; (10)

X
i2QQF

n ðtÞ
bi
nmðtÞ � Bnm; 8m 2 NNn; n 2 NN; (11)

where (10) indicates at most En tasks are dispatched to
Edge-B at one slot for guaranteed processing rate, and (11)
specifies the limited offloading capacity of edge cloud m for
n by placing an upper bound Bnm 2 ½0; B� for the number of
offloaded tasks.

LI ET AL.: LEARNING-AIDED COMPUTATION OFFLOADING FOR TRUSTED COLLABORATIVE MOBILE EDGE COMPUTING 2837

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

5) Stability Constraint: An edge cloud n is stable only if it
has a bounded time-averaged backlog [29], i.e.,

�Qn ¼ lim sup
T!1

1

T

XT�1
t¼0

EfQF
n ðtÞ þQB

n ðtÞg < 1; 8n 2 NN: (12)

3.2 Trusted Cooperative Offloading Problem

Taking trust relationships into account, we leverage coopera-
tions among edge clouds to provide users with QoS guaran-
tee using the offloadingmechanism defined as Definition 1.

Definition 1 (Trusted Cooperative Offloading Mecha-
nism). A trusted cooperative offloading mechanism determines
admission decisions aaðtÞ ¼ fainðtÞ; 8i 2 IIðtÞ; n 2 NNg and

scheduling decisions ssðtÞ ¼ fai
nðtÞ;bi

nmðtÞ; 8i 2 QQF
n ðtÞ;m 2

NNn; n 2 NNg to provide high QoS performance in a best-effort
manner. In particular, m 2 NNn suggests that the cooperative
offloading decisions bi

nmðtÞ are made based on social trust
relationships.

Under such desired mechanism, the instantaneous sys-
tem cost with the co-provisioning of computation, transmis-
sion and social trust services, can be defined as

CðtÞ ¼
X
n2NN

rd½DC
n ðtÞ þDT

n ðtÞ� þ rsSnðtÞ
� �

; (13)

where rd; rs > 0 denote the weighting cost parameters of
latency and trust risk for online control, respectively.

DC
n ðtÞ ¼

P
i2QQF

n ðtÞ d
i
na

i
nðtÞ describes the computation latency

cost at slot t, establishing connections between local com-
puting decisions ai

nðtÞ for Edge-F and processing results din

for Edge-B. DT
n ðtÞ ¼

P
i2QQF

n ðtÞ
P

m2NNn
’�ibi

nmðtÞ and SnðtÞ ¼P
i2QQF

n ðtÞ
P

m2NNn
�ibi

nmðtÞ½1� vnmðtÞ þ @vnmðtÞ� capture the

transmission latency cost (for transmission among associ-

ated edge clouds) and trust risk cost (for managing security

risks) when offloading tasks away. Notice that the transmis-

sion latency between users and requesting edge clouds is

irrelevant to online offloading control later. For simplicity,
we will omit it and use this form for transmission latency in

the rest of paper.
With the goal of minimizing long-term system cost, the

formalmathematical formulation of the Trusted Cooperative
Offloadingmechanism design problem (TCO) is given by

TCO: min
aaðtÞ;ssðtÞ

1

T

X
t2TT

CðtÞ (14)

s.t. Constraints (7)-(12): (14a)

Challenges. There are two challenges that impede the deri-
vation of optimal online control: (1) spatial-temporal coupled
decisions: tasks can be offloaded across edge clouds and the
processing duration is affected by scheduling decisions;
(2) no complete offline information on completion latency: as
the basis for offloading decision making, task completion
latency usually presents high variability, especially under
stochastic task arrivals. These challenges call for an online
optimization approach that can efficiently perform multi-
hop offloadingwith latency prediction knowledge.

4 ONLINE LEARNING-AIDED COOPERATIVE

OFFLOADING MECHANISM

To circumvent the above challenge from stochastic task
arrivals, we develop a novel mechanism called OLCD for
online offloading control by harnessing Lyapunov optimi-
zation, which relies only on current system information and
past offloading control history, while not on any future
information. Meanwhile, it asymptotically converges to the
optimal solution with complete future information (i.e., task
arrivals across all slots).

4.1 Lyapunov Optimization

Let QQðtÞ ¼ QQF ðtÞ; QQBðtÞ� �
be the aggregate queue vector.

To start, we define the perturbed Lyapunov function [29],
[30] as

LðQQðtÞÞ ¼ 1

2
kQQF ðtÞ � uuk þ 1

2
kQQBðtÞk; (15)

where uu ¼ un � 11N with un being perturbation parameters
(to be specified later). We define the Lyapunov drift as
DðQQðtÞÞ ¼ EfLðQQðtþ 1ÞÞ � LðQQðtÞÞjQQðtÞg to capture expec-
ted changes in the quadratic function of backlogs over each
slot. We incorporate system cost into Lyapunov drift, pro-
viding network stability and cost minimization jointly. At
each slot, we try to minimize the drift-plus-penalty function
greedily, i.e.,

min DðQQðtÞÞ þ VEfCðtÞjQQðtÞg; (16)

where V is a tunable parameter weighting how much
importance we stress on minimizing system cost. Intui-
tively, this objective function is rarely converged at the equi-
librium state if LðQQðtÞÞ is too large. To keep LðQQðtÞÞ small,
we “push” QF

n ðtÞ towards un, which ensures that each Edge-
F has certain amount of workloads to schedule, avoiding a
waste of computing resources and social trust relationships.
By carefully choosing the value of un, it can be guaranteed
that the Edge-F task queue always has enough requests
whenever edge cloud n decides to schedule. The TCO prob-
lem with spatial-temporal coupled decisions is thus con-
verted to per-slot optimization problem (16) subject to
constraints (7), (8), (9), (10), and (11), which is solvable with
only current information.

Lemma 1. Denote ~QF
n ðtÞ ¼ QF

n ðtÞ � un and ~vnmðtÞ ¼
1� @vnmðtÞ. Under any feasible control policy, we have

DðQðtÞÞ þ VE CðtÞjQðtÞf g

�
X
n2NN

E

(X
i2IIðtÞ

ainðtÞ ~QF
n ðtÞjQðtÞ

)
þB1 þB2ðtÞ

þ
X
n2NN

E

(X
i2QQF

n ðtÞ
ai
nðtÞ½�iQB

n ðtÞ � �i ~QF
n ðtÞ þ V rdd

i
n�jQðtÞ

)

þ
X
n2NN

E

(X
m2NNn

X
i2QQF

mðtÞ
�ibi

mnðtÞ ~QF
n ðtÞ �

X
i2QQF

n ðtÞ

X
m2NNn

�i�

binmðtÞ½ ~QF
n ðtÞ � V rd’� V rs~vnmðtÞ�jQðtÞ

)
;

(17)

2838 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

where B1 ¼ 1
2

P
n2NN ½ð�maxÞ2ðImax þ ½N � 1�BmaxÞ2 þ

ð�maxÞ2ðEn þ ½N � 1�BmaxÞ þ ð�maxEnÞ2 þ ðQ
B;max
n rmax

n

�mingmin Þ2� is a
finite constant, and B2ðtÞ ¼ �

P
n2NN

P
i2QQB

n ðtÞ r
i
nðtÞQB

n ðtÞ is
a known constant at time slot t since queue backlogs are known
at slot t. The expectations are taken over randomness in system
and policy.

Proof. See Appendix A in the supplemental materials, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/2934103. tu

Remark. The key idea of OLCD is to approximately mini-
mize the upper bound of drift-plus-penalty, subject to
constraints (7), (8), (9), (10), and (11). Note that in the RHS
of (17), the offloaded workloads between two interacting
edge clouds are counted bidirectionally, which is too
complicated to address. By leveraging gap-preserving
techniques [5], we first carry out the transformation to
enable offloaded workloads counted in both directions
combined into a single direction, so that it suffices to
solve a separate decision problem for each edge cloud.
We get the following new problem:

min P1 ¼
X
n2NN

E

(X
i2IIðtÞ

ainðtÞ ~QF
n ðtÞjQðtÞ

)

þ
X
n2NN

E

(X
i2QQF

n ðtÞ
ðai

nðtÞ½�iQB
n ðtÞ � �i ~QF

n ðtÞ þ V rdd
i
n�

�
X
m2NNn

bi
nmðtÞ½�i ~QF

n ðtÞ þ �maxd ~QF
n ðtÞe

11

� V�ird’� V�irs~vnmðtÞ�ÞjQðtÞ
)

s.t. Constraints (7)-(11);

(18)

where dze11 ¼ z if z � 0, and dze11 ¼ 0 if z > 0.

Lemma 2. Any feasible control algorithm that produces the opti-
mal solution to P1 will also be a solution that achieves the mini-
mum of the RHS of (17) within a constant gap.

Proof. See Appendix B in the supplement, available online. tu
Remark. Lemma 2 provides us with the convenience to

consider only problem P1 hereafter, where offloading
decisions are further decoupled for individual edge
clouds. Actually, such practice facilitates the implementa-
tion of distributed and autonomous scenario, where at
any slot, each edge cloud adjusts its own task admission
and scheduling strategies for the minimum system cost.

To optimally solve P1 can not materialize without com-
plete latency knowledge. That is, each edge cloud (or rather,
Edge-F) should have a global latency knowledge for all
queued tasks when processed in associated edge clouds,
i.e., fdim; 8m 2 NNn _ fng; i 2 QQF

n ðtÞg, which serves as the
basis for online offloading control. In practice, however, as
tasks are outsourced and processed at the network edge,
completion latency usually presents high variability due to
varying workload and resource levels, especially under

stochastic task arrivals [21]. Hence, those offloading solutions
that focus on deterministic latency may not be feasible. Instead,
we adopt a learning-aided cooperative offloading approach
that first harnesses online learning techniques to acquire
latency prediction knowledge, and on this basis conducts
online control policy.

To encourage high-quality service offerings, we further
develop an accumulated trust update policy along with the
performance-related incentive. Such social trust update, com-
bined with latency prediction and online queue-based control,
constitutes the key ideas of OLCD. If online control acts as core
strategy based on predicted latency, then surely trust update
guarantees the sound operation of cooperative offloading.

4.2 Latency Prediction Policy

Taking latency variability into account, the desired latency
prediction policy is implemented based on delayed online
learning.

4.2.1 Preliminaries

1) Completion Latency Prediction: Our study highlights the
intriguing relationship between latency variability and
workload levels. Intuitively, for any task i 2 II, the comple-
tion latency in edge cloud n 2 NN is determined by the proc-
essing rate that n can provide. Under resource contention, if
we know the workload to process in the Edge-B8 of edge
cloud n, QB

n ðtÞ, we can compute the available processing
rate rinðtÞ according to (4). Notice that OLCD is specially
designed to serve computation-intensive task requests,
whose processing often takes some amount of time to com-
plete, from minutes to hours or even days [3]. As a result,
task completion latency associated with edge cloud n will
be affected by its workload levels for future consecutive
slots. The problem is that edge clouds don’t have a global
knowledge of workload levels at all slots. To acquire com-
pletion latency knowledge, we seek the online learning tech-
nique to predict future workload information.

2) Online Learning and Delayed Online Learning: In online
learning, a learner interacts with an environment over a
sequence of consecutive rounds [31]. In round t, the learner
chooses an action xt from action spaceXX, and the environment
delivers a cost function ft. Thus the learner incurs loss ftðxtÞ.
The online algorithm aims at minimizing the total loss over
timespan T . One popular approach is to apply Online Gradi-
ent Descent (OGD) method to solve the loss minimization
problem. Specifically, after choosing the tth action xt, OGD
computes the gradient rftjxt of the loss function at xt, and
chooses action xtþ1 ¼ xt � hrftjxt in the subsequent round.
OGD has proven useful for solving large-scale learning prob-
lems, and there has been much work on extending to parallel
and distributed systems [32]. Notice that online learning
assumes the loss function ftðxtÞ (or feedback) is delivered and
applied before choosing next action in round tþ 1.

But in our latency prediction policy, the processing dura-
tion makes task completion latency d̂in predicted at slot t
highly rely on workload levels for future consecutive slots
(or rounds), i.e., QB

n ðtþ 1Þ; QB
n ðtþ 2Þ; . . ., where actual

8. In the following, we use “workload level” instead of “workload to
process in the Edge-B” when there is no confusion.

LI ET AL.: LEARNING-AIDED COMPUTATION OFFLOADING FOR TRUSTED COLLABORATIVE MOBILE EDGE COMPUTING 2839

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

workload QB
n ðtþ kÞ cannot be observed until slot tþ k

comes. Such delayed feedback greatly undermines effi-
ciency of online learning models that target immediate feed-
back. To this end, we employ Delayed Online Gradient
Descent (DOGD) method, where loss function is not neces-
sarily delivered before choosing next action and can be
applied only after a delay of several slots. The impact of
delayed feedback on learning process is depicted in Fig. 3.
DOGD first proposed by Zinkevich is designed for distrib-
uted systems with delays between gradient computations
and corresponding feedbacks [33], [34]. Formally, each slot t
has a non-negative integer delay dt. The feedback from t is
delivered at the end of tþ dt � 1 and can be applied at
tþ dt. In standard online learning, dt ¼ 1 for all t.

4.2.2 DOGD-Based Computation Latency Prediction

The prediction model is parameterized by a vector
TTt ¼ ftþ 1; . . . ; tþ bmaxg, where prediction window size
bmax ¼ maxi2II bi is specified to accommodate user diverse

demand in deadline. At slot t, each edge cloud n 2 NN pre-

dicts workload information, Q̂̂Q
B

n ðtÞ ¼ fQ̂B
n ðtÞ; 8t 2 TTtg,

where actual workload QB
n ðtÞ can be observed at the begin-

ning of slot t. Such learning window model approximates
practical scenarios and is also used in [32]. Hence, workload
prediction for TTt turns out to be a set of delayed online learning
processes, where for each slot t 2 TTt, the feedback from t is
delivered at the end of t � 1 and can be applied at slot t.

We implement the DOGD method to provide effective
prediction on future workload levels. To capture workload

fluctuation, we assumeQB;max
n ¼ maxt2TT QB

n ðtÞ, which is pro-

vided by each edge cloud n 2 NN based on prior experience.
To bound the sub-optimality gap in overall loss due to imper-
fect prediction for slot t 2 TTt, we construct a loss function

fntðQ̂B
n ðtÞÞ ¼ Q̂

B

n ðtÞ �QB
n ðtÞ

��� ���; (19)

which is a convex function on Q̂
B

n ðtÞ 2 ½0; QB;max
n �. A loss

minimization problem for any edge cloud n over all slots
can be characterized as

min
Q̂
B
n ðtÞ2½0;QB;max

n �

X
t2TT

X
t2TTt

fntðQ̂
B

n ðtÞÞ: (20)

Due to the delayed feedback of QB
n ðtÞ, loss function

fntðQ̂B
n ðtÞÞ is not given before choosing the next predicted

workload Q̂
B

n ðt þ 1Þ. The natural generalization of OGD to

this delayed setting is to process loss functions and apply

their gradients once they are delivered. Specifically, at any
slot t, each edge cloud n makes a workload prediction

Q̂
B

n ðtÞ for each future slot t 2 TTt based on the feedback that

it has observed from t, and suffers the loss fntðQ̂B
n ðtÞÞ. The

update rule for each slot t 2 TTt is as follows:

Q̂
B

n ðt þ 1Þ ¼ Q̂B
n ðtÞ � hnrfntjQB

n ðtÞ; (21)

where step size hn is typically set proportional to 1ffiffiffiffiffiffiffiffi
TþDp (e.g.,

Q
B;max
nffiffiffiffiffiffiffiffi
TþDp) with D ¼P

t2TT
P

t2TTt
dt ¼ 1

2Td
max 1þ dmax½ � denoting

the sum of delays over all slots.

Algorithm 1. Latency Prediction Algorithm at Slot t

1 for Each edge cloud n 2 NN do

2 hn Q
B;max
nffiffiffiffiffiffiffiffi
TþDp ;

3 Observe actual computation workloads QB
n ðtÞ and share

this information with trusted neighbors inNNn;
4 for Each slot t 2 TT t do
5 Derive predicted workload Q̂B

n ðtÞ by (21);

6 r̂nðtÞ 1
a
b&nðtÞ�Q̂B

n ðtÞ;
7 for Each task i 2 QQF

n ðtÞ do
8 for Each edge cloudm 2 NNn _ fng do
9 ~�

i �i; s t;

10 while ~�
i
> 0 do

11 ~rinðsÞ minfr̂nðsÞgmin

giQB
n ðsÞ

; ~�
ig;

12 ~�
i ~�

i � ~rinðsÞ; s sþ 1;
13 d̂im s� t.

As shown in Algorithm 1, our latency prediction policy
employs DOGD to compute future workload levels for predic-

tion window, Q̂̂Q
B

n ðtÞ ¼ fQ̂B
n ðtÞ; 8t 2 TTtg, where Q̂B

n ðtÞ is pre-
dicted by minimizing fntðQ̂B

n ðtÞÞ (line 5) based on the
feedback that it has observed from t (line 3). For better coopera-
tive offloading control, each edge cloud is expected to share
workload information with its trusted neighbors. Given pre-
diction Q̂B

n ðtÞ for all slots t 2 TTt, we can obtain the available
processing rate that edge cloud n 2 NN can provide,
R̂̂RnðtÞ ¼ fr̂nðtÞ; 8t 2 TTtg (line 6). With collective rate knowl-
edge fR̂̂RmðtÞ; 8m 2 fng _NNng, edge cloud n can thus
estimate the corresponding computation latency for each task
i 2 QQF

n ðtÞ when processed in associated edge clouds, i.e.,

d̂̂d
i

n ¼ fd̂im; 8m 2 fng _NNng (lines 7-13). In the following, we
assume that completion latency knowledge (ormore precisely,
future workload levels) can be predicted accurately. The case
with prediction errorswill be discussed later.

4.2.3 Regret Analysis

We next analyze the performance of Algorithm 1 in predict-

ing future workloads Q̂̂Q
B

n ðtÞ by computing the regret bound.

Let QQB;	
n ðtÞ ¼ fQB;	

n ðtÞ; 8t 2 TTtg be the best static predictor
in hindsight obtained by the strategy in [35] with full knowl-
edge of workloads. We have

RegretTn ðDOGDÞ ¼
X
t2TT

X
t2TTt

fnt Q̂
B

n ðtÞ
� 	

� fnt QB	
n ðtÞ

� �h i
: (22)

The following theorem upper-bounds the overall regret.

Theorem 1. The regret of DOGD in Algorithm 1 in predicting
future workloads with respect to the best static prediction strat-
egy that uses QQB;	

n ðtÞ; 8t 2 TT , is upper bounded by

RegretT ðDOGDÞ ¼
X
n2NN

RegretTn ðDOGDÞ

�
X
n2NN

bmax

2hn
þ hn

Tbmax

2
þ 2D

 �
:

(23)

Fig. 3. Impact of delayed feedback on learning process.

2840 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

Proof. See Appendix C in the supplemental materials, avail-
able online. tu

4.3 Online Queue-Based Control Policy

Given latency prediction knowledge, OLCD employs online
queue-based control policy to solve per-slot joint admission
and scheduling subproblem with a carefully designed objec-
tive specified for individual edge clouds. The solutions for all
subproblems constitute a feasible solution to the original con-
trol problem P1.

4.3.1 Task Admission Control

Task admission decisions can be made by minimizing the
first term of the RHS of (18). Since admission decisions of
different edge clouds are independent, we can concurrently
obtain aanðtÞ ¼ fainðtÞ; 8i 2 IIðtÞg by solving

min
aanðtÞ

X
i2IIðtÞ

ainðtÞ½QF
n ðtÞ � un�

s.t. 0 � ainðtÞ � Ai
nðtÞ:

(24)

The optimal solution can thus reduce to a simple thresh-
old rule

ainðtÞ ¼
Ai

nðtÞ; QF
n ðtÞ � un;

0; otherwise:

(
(25)

Remark. For edge cloudn, newly arrived task iwill be admit-
ted into the system with the increase of workload Ai

nðtÞ
when backlog QF

n ðtÞ is no larger than threshold un; other-
wise it will be rejected for system stability. The intuitive
behind no task admission is that, current task arrivals go
beyond the response capability of Edge-F, and the best way
to avoid long waits for scheduling is to seek for another
trusted edge cloud that covers its vicinity to associate.

4.3.2 Task Scheduling Control

In OLCD, each Edge-F is responsible for scheduling tasks to
potential edge clouds with high service performance. By gap-
preserving transformation, scheduling decisions (including
local computing and cooperative offloading) of different edge
clouds are independent from each other. For edge cloud n,
decisions on ai

nðtÞ and binmðtÞ can be determined by solving

min
ssnðtÞ

X
i2QQF

n ðtÞ
ðai

nðtÞ½V rdd
i
n þ �iQB

n ðtÞ � �i ~QF
n ðtÞ�

þ
X
m2NNn

bi
nmðtÞ½V�ird’þ V�irs~vnmðtÞ

� �i ~QF
n ðtÞ � �maxd ~QF

n ðtÞe
11�Þ

s.t. Constraints (7)-(11):

(26)

The scheduling decision problem in (26) is essentially an
assignment problem: how to assign available computing
capabilities (i.e., local computing resources or social trust
relationships) to tasks for minimum system cost under con-
straints (7), (8), (9), (10), and (11)? Such objective function

contains two parts: one for local computing Ji
nðtÞ ¼

ai
nðtÞ½V rdd

i
n þ �iQB

n ðtÞ � �i ~QF
n ðtÞ� involving computation

latency, and one for a set of cooperative offloading Ji
nmðtÞ ¼

binmðtÞ½V�ird’ þ V�irs~vnmðtÞ � �i ~QF
n ðtÞ � �maxd ~QF

n ðtÞe
11�;

8m 2 NNn taking transmission latency and trust risk into
account. By provisioning computation, transmission and

trust services, the optimal solution to (26) is expected to

achieve latency versus trust risk tradeoff. Moreover, con-

straints (7), (10) and (11) focus on a balanced scheduling

plan, while (8) and (9) suggest the prerequisites on benefi-

cial offloading and trusted offloading.
Consider an instantaneous assignment problem for edge

cloud n 2 NN with trusted neighbor set NNn ¼ fm1;m2; . . .g
and queued task set QQF

n ðtÞ ¼ fi1; i2; . . .g. Such problem can
be reduced to a minimum cost maximum flow (MCMF)
problem [36], where constraints (7), (8), (9), (10), and (11)
guarantee tasks are properly assigned. Let Gnt ¼ ðQQF

n ðtÞ_
NNn _ fn; S;Dg; EÞ denote the flow network graph for edge
cloud n at slot t, where E is the set of edges, and vertices n,
S, D represent local edge cloud, source and destination
nodes. There are jQQF

n ðtÞj edges connecting S to all nodes
ik 2 QQF

n ðtÞ with capacity 1 since every task can be offloaded
to at most one edge cloud at one slot. There are also jNNnj
edges connecting all nodesml 2 NNn to D with capacity Bnml

under offloading capacity constraint (11). Similarly, we
connect n to D, whose capacity is set to En due to limited
processing capacity (10). For each task ik, we add an edge
from node ik to all nodes ml 2 NNn which satisfy (8) and (9),
indicating that the selected neighbors must be trusted
enough and can provide lower latency, which is vital to
realizing QoS guarantee for cooperative offloading. The
capacity and cost of each edge are set to 1 and J

ik
nmlðtÞ. Since

tasks can also be processed locally, we add an edge from all
nodes ik to node n with capacity 1 and cost J

ik
n ðtÞ. We set

the cost of all other edges in E to 0. Consequently, by finding
the minimum-cost maximum flow in Gnt, edge cloud n
is expected to serve task requests at slot t in a best-effort
manner with the minimum system cost in (26).

Take trusted cooperative offloading system illustrated in
Fig. 1 for example. At slot t, with the help of edge clouds B
and E (i.e.,NNn ¼ fm1;m2g),D needs to serve 4 task requests

queued in Edge-F (i.e., QQF
n ðtÞ ¼ fi1; i2; i3; i4g). Each task ik is

associated with one desired trust value. The corresponding
flow network graph Gnt is shown in Fig. 4. In particular, for
task i1, only edge cloud B satisfies its trust demand while
providing lower latency. Hence, node i1 can transfer flow to
nodes m1 and n with the cost Ji1

nm1
ðtÞ and Ji1

n ðtÞ. The capaci-
ties for two edges are both 1.

By reducing to the MCMF problem on Gnt, we can
leverage any algorithm for that problem to determine
the optimal offloading decisions in polynomial time.
One of the well-known techniques is the Successive
Shortest Path (SSP) algorithm proposed by Edmonds and
Karp [37].

Fig. 4. An example of reduction of the optimal task scheduling instance
problem to MCMF.

LI ET AL.: LEARNING-AIDED COMPUTATION OFFLOADING FOR TRUSTED COLLABORATIVE MOBILE EDGE COMPUTING 2841

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

4.3.3 Queue Update Control

The queue backlogs associated with each edge cloud n 2 NN ,
QF

n ðtÞ and QB
n ðtÞ, can be updated according to (5) and (6),

with the above task admission and scheduling control
strategies.

4.4 Accumulated Trust Update Policy

We establish a connection between cooperative offloading
design and social trust management, which mainly involves
two aspects: trusted neighbor set update (specified earlier)
and trust value update. Intuitively, edge clouds may hesi-
tate to interact with less trusted or unknown ones due to
trust risks in MEC collaboration. To encourage high-quality
service offerings and combat uncooperative strategic behav-
iors, accumulated trust value update policy along with the
intuition of “performance-related incentive” is necessary
[38]. Specifically, the MEC service provider collects the
locally-generated service result once a task is completed,
and dynamically aggregates it to yield the global trust val-
ues for all associated cooperative edge clouds. As a result,
edge clouds are motivated to build good trust relationships
for increased chances of being assisted and selected in
future offloading.

4.4.1 Service Valuation for A Single Interaction

For any task i 2 II, the provided offloading service corre-
sponds to the process from being admitted into the system
at slot ti0 to being served completely at slot ti ¼ tiK after mul-
tiple offloading hops. All edge clouds who contribute to the
offloading service (i.e., NNi) can be easily located along the
offloading path pi ¼ fni

0; . . . ; n
i
Kg. Given i’s deadline

demand bi and actual completion latency di;	 ¼ ti � ti0, the
provider assigns a performance-related rating Scorei 2 ½0; 1�
to this service offering. Intuitively, the smaller latency di;	 is,
the higher rating Scorei would be. One simple example is as
follows:

Scorei ¼ 1� di;	
2bi

; 0 � di;	 < 2bi;

0; di;	 � 2bi:

(
(27)

4.4.2 Aging-Based Trust Update

At the end of each slot t, the MEC service provider aggre-
gates current and historical interaction results to update
global trust values among all associated edge clouds.
Clearly, recent interactions can reflect edge clouds’ future
cooperative performance more accurately than earlier inter-
actions [19]. Hence, in calculating social trust value between
any cooperative edge clouds, we weight the rating for each
interaction according to its age, i.e., number of time slots
that have passed since it happened. That is,

vnmðtÞ ¼ 1

InmðtÞ
XInmðtÞ
k¼1

Scorekx
tk ; (28)

where InmðtÞ denotes the number of interactions between
edge clouds n and m until slot t, and Scorek ¼ Scorei is the
rating of the kth interaction associated with user i. The
aging coefficient x 2 ð0; 1Þ is used to control the weights of
interaction ratings by their ages denoted by tk, making the
weights assigned to recent interactions heavier than older
ones. The trust values between two edge clouds that have

no previous interactions are set to 0. Notice that the above is
just one common way to evaluate social trust between edge
clouds. Actually, there are many other ways for trust evalu-
ation in the literature.

4.5 Performance Analysis

OLCD contains three main components: a latency predictor,
an online queue-based controller and a social trust manager.
All of them work online together and influence each other.
The complete OLCD that enables autonomous coordination
among edge clouds is summarized in Algorithm 2. At any
slot t 2 TT , each edge cloud employs online queue-based
control in a distributed manner. The Edge-F is responsible
for task admission (lines 1-4) and scheduling (lines 9-14),
any of which that realizes the optimized workload alloca-
tion is an optimal online control profile for per-slot minimi-
zation problem P1. Specifically, for each queued task, Edge-
F applies Algorithm 1 to predict completion latency in asso-
ciated edge clouds, and then determines scheduling deci-
sions via SSP. Meanwhile, Edge-B processes tasks
dispatched from Edge-F (lines 6-8). As the central trust man-
ager, MEC service provider is expected to perform accumu-
lated trust update to encourage high-quality service
offerings (lines 16-21). If online scheduling acts as core strat-
egy based on latency prediction results, then surely trust
update guarantees the sound operation of cooperative
offloading.

Algorithm 2. OLCD at Slot t

1 for Each task i 2 IIðtÞ do
2 for Each edge cloud n 2 NN do
3 if ni

0 ¼ n then
4 Derive admission decision ainðtÞ by (25);
5 for Each edge cloud n 2 NN do
6 for Each task i 2 QQB

n ðtÞ do
7 Derive processing rate rinðtÞ by (4);
8 �ið:; tÞ �ið:; tÞ � rinðtÞ;
9 for Each task i 2 QQF

n ðtÞ do
10 for Each edge cloudm 2 NNn _ fng do
11 Apply Algorithm 1 to obtain estimated latency d̂

i

m;
12 Apply SSP to obtain decisions ai

nðtÞ and bi
nmðtÞ;

13 if ai
nðtÞ ¼ 1 then

14 �ið:; tÞ �i;
15 Update QF

n ðtÞ, QB
n ðtÞ according to (5), (6);

16 for Each task i 2 II do
17 if �ið:; tÞ ¼ 0 then
18 Update trust value vnmðtÞ; 8n;m 2 NNi by (28);
19 II II n fig.
20 for Each edge cloud n 2 NN do
21 Update trusted neighbor setNNn;

Complexity. Take OLCD implemented at slot t as an exam-
ple. The running time of task admission isOðNIðtÞÞ. There are
OðNÞ iterations for online predictive scheduling, within each
of which OLCD first considers v1 ¼ jNNnj þ 1 candidate sched-
uling strategies for each task queued in n’s Edge-F, predicts
computation latency for each strategy using

OðjTTtj þ v1jQQF
n ðtÞjÞ-complexity Algorithm 1 and applies SSP

to obtain scheduling control with running time

minfOðv22f	Þ;Oðv32c	Þg. Here v2 ¼ v1 þ 2þ jQQF
n ðtÞj is the

total number of vertices on Gnt, f	 is the derived maximum

2842 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

flow and c	 is the corresponding minimum cost. While
for tasks queued in Edge-B, the amount of residual workloads
is computed with complexity of OðjQQB

n ðtÞjÞ. Therefore, the
overall complexity of online scheduling ismin fOðN ½v1jTTtj þ
v21jQQF

n ðtÞj þ v22f
	�Þ; OðN ½v1jTTtj þ v21jQQF

n ðtÞj þ v32c
	�Þg. The run-

ning time of calculating trust values for associated cooperative

edge clouds is OðIPn2NN
P

m2NNn
InmðtÞÞ. Thus, OLCD can

find a near-optimal solution in polynomial time.
OLCD always exhibits obvious dynamic characteristics,

especially under stochastic task arrivals. Next, we prove
that even in the dynamic case, OLCD achieves close-to-opti-
mal system cost while guaranteeing system stability and
robustness against prediction errors. Before that, we define
the perturbation parameter as

un ¼D 2�maxðEn þ N � 1½ �BmaxÞ; (29)

which can be easily determined since it only requires the
knowledge of maximum coefficient of transmission latency
cost, maximum number of tasks dispatched to the Edge-B
and maximum number of tasks offloaded away, and
requires no statistical knowledge of system dynamics, e.g.,

QF
n ðtÞ and QB

n ðtÞ. Such feature is desirable for practical

implementations.

Theorem 2. Suppose QF
n ð0Þ ¼ un;Q

B
n ð0Þ ¼ 0; 8n 2 NN . If

admission decisions aaðtÞ, scheduling decisions ssðtÞ and queue
updates are performed by Algorithm 2 with V > 0, we obtain
the following properties of OLCD:

lim sup
T!1

1

T

XT�1
t¼0

XN
n¼1

EfQF
n ðtÞ þQB

n ðtÞg � un þ B1 þ V ½Cmax � C	�
�

;

(30)

lim sup
T!1

1

T

XT�1
t¼0

E COLCDðtÞf g � C	 þB1

V
; (31)

where B1 is defined as in Lemma 1, C	 is the optimal system
cost of TCO in (14), Cmax ¼ NrdðEdC;maxþ N � 1½ �
B’�maxÞþ N � 1½ �NBrs�

max is the largest system cost, and
� > 0 is a constant denoting the long-term computation sur-
plus achieved by some stationary strategy.

Proof. See Appendix D in the supplemental materials, avail-
able online. tu

Remark. This theorem specifies a ½Oð1=V Þ; OðV Þ� tradeoff
between cost optimality and queueing delay. According to
Little’s law, the average queueing delay including trans-
mission and computation latency, is proportional to queue
backlogs. The long-term queue backlog bound in (30) indi-
cates that the overall average queue backlog grows line-
arly with V . OLCD asymptotically achieves the optimal
cost performance of the offline problem by letting V !1.
However, the optimal system cost is achieved at the
expense of larger transmission and computation latency.
Since larger Edge-F and Edge-B queues are required to sta-
bilize the system, the convergence is postponed.

With the above time-averaged system performance,
we next consider more realistic scenario. What happens
when the scheduling decisions are made based on pre-
dicted workloads Q̂B

n ðtÞ that differ from actual workloads

QB
n ðtÞ? The following theorem shows that OLCD is

robust against workload prediction errors.

Theorem 3. Suppose there exists a constant � such that at all
slots t > 0, jQ̂B

n ðtÞ �QB
n ðtÞj � � holds. Under OLCD, we

have

lim sup
T!1

1

T

XT�1
t¼0

XN
n¼1

EfQF
n ðtÞ þQB

n ðtÞg � un þB3 þ V ½Cmax � C	�
�

;

(32)

lim sup
T!1

1

T

XT�1
t¼0

E COLCDðtÞf g � C	 þB3

V
; (33)

where B3 ¼ B1 þ �
P

n2NN ½�maxEn þ Q
B;max
n rmax

n

�mingmin �.
Proof. See Appendix E in the supplemental materials, avail-

able online. tu
Remark. Comparing (31) and (33), we conclude that with

inaccurate workload prediction, larger V is desired to
achieve the same average system cost as that with accu-
rate information. However, such practice may result in
higher average queue backlogs, which can be observed
by comparing (30) and (32). Therefore, OLCD works even
with inaccurate workload prediction but its robustness is
achieved at the expense of a decreased stability.

4.6 Discussions

Discussions about End Devices’ Computing Capability. Our work
focuses on cooperative offloading or resource sharing among
edge clouds. Existing researches mostly make a simplifying
assumption that user requests are entirely offloaded from end
devices to requesting edge clouds [4], [5], [7]. In practice, how-
ever, end devices usually possess increasing computing capa-
bility and can execute complex computation tasks.
Accordingly, a combination of local device computing andnet-
worked resource sharing empowers users with multiple task
execution approaches, including local mobile computing, D2D
offloading, direct edge cloud offloading and D2D-assisted
edge cloud offloading. Itwould beworthwhile to further study
how to motivate efficient cooperations among end devices.
Since mobile devices are carried or owned by users, it is prom-
ising to leverage intrinsic social ties among users as coopera-
tion incentive. We believe that this will serve as the corner-
stone for socially-motivated collaborativeMEC systems.

Discussions about User Mobility. In this work, we mainly
talk about a trusted cooperative offloading mechanism
within specific geographic regions. By leveraging coopera-
tions among edge clouds, networked resource sharing can
be realized via multi-hop offloading. In this case, user
mobility does not affect task offloading among edge clouds
since the correspondence between users and requesting
edge clouds remains the same. Either considering user
mobility or not has no effect on offloading control. Hence,
we choose the simplified version, i.e., static scenario with-
out user mobility. But if users are allowed to connect to
other edge clouds, that’s another story. When any user
moves across different areas, its service usually needs to be
migrated to follow it so that the benefits of cooperative off-
loading are maintained. Moreover, transmission latency
between the user and the edge cloud that host its service

LI ET AL.: LEARNING-AIDED COMPUTATION OFFLOADING FOR TRUSTED COLLABORATIVE MOBILE EDGE COMPUTING 2843

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

may also decrease. A key challenge lies in when and where
to migrate the service, which has been studied in earlier
works [39]. Notice that a full analysis of dynamic service
migration under user mobility effect is out of the scope of
this work. It surely will be interesting for future research to
study user mobility-driven cooperative offloading.

5 PERFORMANCE EVALUATION

5.1 Simulation Setup

We envision a MEC system deployed in a commercial com-
plex where business tenants deploy edge clouds to serve
employees. We simulate a 300 m
 300 m commercial com-
plex with 100 edge clouds9 distributed by homogeneous Pois-
son Point Process, which is commonly used in previous
studies [8]. Unless otherwise specified, each edge cloud is con-
nected to 7 neighbors on average with initial trust value uni-
formly distributed in [0.9, 1], and the trust decaying factor @ is
set to 0.05. Suppose both local computing capacity and off-
loading capacity are uniformly distributed in [3, 6]. Inspired
by [4], we set the skewness parameter x ¼ 1:04, processing
speed of fully loaded edge clouds y ¼ 200, and service limita-
tion &nðtÞ uniformly distributed in [120, 150]. The backhaul
transmission latency coefficient ’ is set to 0:1 sec=Kb [25].

Consider the realistic job trace from Google cluster [41] as
computation-intensive tasks. For each job trace, the task is
specified by a tuple including time in seconds since the start
of data collection, consumptions of CPU and memory, and
task type. Here, the task type chosen from f0; 1; 2; 3g is
determined by conducting workload characterizations.
Notice that our study highlights the role of tasks with
diverse trust demands. It is acceptable to regard that differ-
ent task types correspond to heterogeneous trust demands
f0; 0:2; 0:4; 0:6g, ranging from completely public applica-
tions (i.e., si ¼ 0) to privacy-sensitive ones (i.e., si ¼ 0:6).
We adjust tasks’ inter-arrival time based on Poisson distri-
bution to accommodate stochastic arrival and the deadlines
are uniformly distributed in [10,15]. The expected number
of CPU cycles and expected input data size per-task
are 50M and 0:25 Mb with gi uniformly distributed in
[100, 300]. Motivated by the fact that the popularity follows
heavy-tailed distribution, we use Zipf distribution to

capture unbalanced workloads [42], and each user is
assigned to its nearest edge cloud with trust value 1.

We implement the OLCD mechanism for T ¼ 1000 slots
and compare it with three benchmarks: (1) Local Execution
(LoE) [13]: edge clouds only process locally arrived tasks
with the highest social trust; (2) Single-hop Offloading (SiO)
[18]: trusted cooperative offloading is confined within one
hop, which achieves lower completion latency while
guaranteeing an acceptable social trust; (3) Multi-hop off-
loading ignorant of Trust (MiT) [15]: multi-hop offloading is
enabled to minimize completion latency regardless of trust
relationships among edge clouds. All algorithms are imple-
mented through Python code in Anaconda Simulator, and
evaluated on a machine with Windows 64 bits, 3.2 GHz Intel
Core i5 Processor, and 16 GB 1600 MHz DDR3 Memory.

5.2 Evaluation Results

5.2.1 Run-Time Performance

Wefirst illustrate the performance comparison of system cost,
queue backlogs and satisfaction ratio in terms of timespan T .

Fig. 5 presents that our proposed OLCD achieves the
lowest system cost with high speed of convergence. The
intuitive is that in OLCD, tasks are often offloaded multiple
hops away and finally fulfilled by powerful edge clouds.
While in LoE, tasks can only be processed locally. Under
limited computing capacity, this practice may result in high
computation latency, even with the lowest trust risks and
transmission latency. That’s why the system cost in LoE is
the highest. Due to failure of fully exploiting computing
capabilities of cooperative edge clouds, one-hop SiO is infe-
rior to multi-hop MiT and OLCD in reducing system cost.
Compared to OLCD, MiT ignores social trust relationships
among edge clouds when making offloading decisions, thus
leading to higher trust risk cost. The results reveal what
benefit do multi-hop offloading underlying social trust rela-
tionships bring to MEC system.

From Fig. 6, we can observe that the queue backlogs
under these mechanisms converge to steady-state levels
with almost no ripples. That is, both convergence and sys-
tem stability are maintained. Under perturbed Lyapunov
optimization, QF

n ðtÞ is “pushed” towards un to avoid edge
cloud n from wasting computing resources and potentials
of social trust relationships. In addition, the stochastic con-
trol processes will also lead to changes in QB

n ðtÞ accordingly.
That’s why the queue backlogs fluctuate around one fixed
value.

Fig. 7 shows that OLCD is superior to others in guarantee-
ing high satisfaction ratio denoted by the proportion of off-
loaded tasks that are able to meet the deadlines. In general,

Fig. 5. System cost versus T . Fig. 6. Queue backlogs versus T .

9. To force edge clouds deployed by different tenants, the scale of
commercial complex should be large enough (> 100;000 ft2 [8]). Only
in this way can the potential of cooperations among edge clouds be
exerted fully. According to the 2012 statistics of IREM [40], a typical
commercial complex within an area around 135; 710 ft2 was occupied
by 10 tenants on average. Hence, it is reasonable to assume that there
are 100 edge clouds deployed in a 300 m
 300 m commercial complex
(968; 751:938 ft2).

2844 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

low satisfaction ratio suggests poor offloading controls and
under-utilized collaborative computing potentials. LoE
achieves the lowest satisfaction ratio. That’s because tasks in
LoE can only be processed locally, and it is hard for resource-
constrained edge clouds to fulfill all tasks alone, especially
under unbalanced workloads. Compared to multi-hop MiT
and OLCD, the satisfaction ratio of single-hop SiO is lower
since it fails to fully exploit computing resources of multi-
hop neighbors. MiT achieves similar satisfaction ratio to
OLCD with small ratio gap, since offloading control in MiT
is performed regardless of social trust among cooperative
edge clouds and tasks are likely to be assigned to untrusted
edge clouds, increasing the risks of missing deadlines. It
indicates that historic interactions can partly reflect the qual-
ity of current offloading service offering.

Table 2 presents that these mechanisms share different
average running time. Since there is no need for LoE to
interact with neighbors in local computing, LoE is very fast
and the other three solutions are relatively slow. Compared
to OLCD, MiT is inferior because without trust demand
constraint, there exist more complex interactions between
edge clouds in multi-hop offloading. Taking Figs. 5 and 6
together, we observe that OLCD provides a good trade-off
between system performance and computational overhead,
which serves near-optimal system cost and queue backlog
with relatively low running time.

5.2.2 Trust Service Performance

Fig. 8 demonstrates the comparison of average system cost
in terms of trust propagation intensity captured by average
neighbors per edge cloud. As expected, trust propagation
intensity has no effect on LoE since tasks in LoE can only be
processed locally. As the average neighbor number
increases, tasks are more likely to be offloaded to powerful
edge clouds, facilitating exploring collaborative computing
potentials. Thus, system cost in other mechanisms
decreases. Without one-hop restrictions like SiO, OLCD and
MiT are particularly influenced by trust propagation

intensity under multi-hop offloading. It’s suggested that
edge cloud should be encouraged to build social trust rela-
tionships since high-intensity trust propagation always
yields a performance boost.

Trusted cooperative offloading services can’t fully exert
its function with restrained trust propagation length, which
is closely related to trust decaying factor @. The larger @ is,
the shorter trust propagation would be. Fig. 9 illustrates
how average system cost changes with @. It can be seen that
the overall trend is increasing, except for LoE independent
of trust propagation. The average system cost in OLCD is
lower than that in SiO and MiT, and the cost gap decreases
with @. When there is little decaying (e.g., @ ¼ 0:05), tasks
are likely to be offloaded multiple hops away under less
limitation on trust propagation, thus giving full play to the
superiorities of cooperative offloading. With more powerful
edge clouds involved, the system cost is decreased, espe-
cially for multi-hop OLCD and MiT. Compared to MiT,
OLCD achieves lower system cost since it can realize opti-
mal online control for multi-hop offloading, even under
restrained propagation length. As @ increases, edge clouds
will be conservative with cooperative offloading, and coop-
erating with indirectly connected neighbors always means
high trust risks for them. Hence, multi-hop offloading has
little impact on system cost and the cost gap is small.

Fig. 10 shows the average ratio of completion latency cost
and trust risk cost with varying maximum offloading hops.
As the number of hops increases, tasks are more likely to be
offloaded to powerful edge clouds, yielding lower computa-
tion latency, but at the expense of high social trust risks and
communication latency. That’s why latency cost ratio has the
trends to decrease, but to increase in trust risk cost ratio, i.e.,
there exists a tradeoff between completion latency cost and
trust risk cost. This result reconfirms the benefits in exploit-
ing the co-provisioning of computation, transmission and
trust services inMEC.

TABLE 2
Average Running Time for the OLCD

Mechanism versus Benchmarks

Algorithms Average Running Time

OLCD 201.59 sec
LoE 80.31 sec
SiO 190.62 sec
MiT 962.28 sec

Fig. 8. Average system cost versus average neighbor number.Fig. 7. Satisfaction ratio versus T .

Fig. 9. Average system cost versus trust decaying factor @.

LI ET AL.: LEARNING-AIDED COMPUTATION OFFLOADING FOR TRUSTED COLLABORATIVE MOBILE EDGE COMPUTING 2845

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

5.2.3 Impact of Parameters

We next show the comparison of system cost and queue
backlogs in terms of importance weight V , which is intro-
duced to capture the heterogeneity in how much emphasis
put on cost minimization. From Fig. 11, we can see that as V
increases, the system cost under these mechanisms
decreases and OLCD achieves the lowest cost. The intuition
is that high V typically means highlighting cost reduction
more in online offloading control. OLCD is superior in
achieving a trade-off between completion latency and trust
risks. Specifically, the offloading cost in LoE greatly
decreases with V . That’s because with no interactions or
impact from other edge clouds, LoE is more sensitive to V
in balancing queue stability and offloading cost. As shown
in Fig. 12, the average queue backlogs under these mecha-
nisms increase with V , since compared to cost reduction,
more attention is paid to queue stability. Combining these
two figures, we can see that as V increases, the lower system
cost is realized at the expense of larger queue backlogs. It’s
indicated that there exists a ½Oð1=V Þ; OðV Þ� trade-off
between system cost and queue backlogs, which is consis-
tent with Theorem 2.

Fig. 13 illustrates the impact of estimation QB;max
n on the

regret of DOGD for delayed online learning. In particular, we
deploy Algorithm 1 using QB;max

n , 0:8QB;max
n and 1:2QB;max

n to
compute the learning rate. We observe that the regrets in all
cases are close, indicating both over-estimation (i.e., the case
for 1:2QB;max

n) and under-estimation (i.e., the case for
0:8QB;max

n) of QB;max
n have a small effect on the regret of

DOGD.Moreover, all regrets are always less than the theoreti-
cal bound given in Theorem 1.

5.2.4 Effectiveness of Workload Prediction

We further examine the impact of prediction errors on off-
loading service performance. At each slot, we add a random
error (�30%, uniformly distributed) to the amount of pre-
dicted workloads queued in all edge clouds and then con-
duct OLCD on such error dataset. For any edge cloud, exact
workload information for one slot is known only when that
slot comes. Using results on the original datasets as base-
line, we present the difference in average system cost
increase and average queue backlog increase due to the
injected prediction errors with varying importance weight
V . As shown in Fig. 14, we observe that prediction errors
result in the increased cost within the range of �1.5 to 5.5
percent. For all V we experiment with, the difference in aver-
age queue backlog increase is between �6 and 6 percent, as
illustrated in Fig. 15. Combining these two figures coincides
with our analysis about Theorem 3, where V can be lever-
aged to ensure robustness of OLCD to workload prediction
errors.

6 RELATED WORK

Cooperative MEC. The emerging MEC paradigm (a.k.a. fog
computing [1], cloudlet [43]) offers the possibility for sup-
porting mobile applications such as augmented reality and
online gaming [3], [4], [5]. Compared with traditional data

Fig. 10. Latency cost and trust risk cost versus maximum hops.

Fig. 11. Average system cost versus importance weight V .

Fig. 12. Average queue backlogs versus importance weight V .

Fig. 13. Impact of estimated QB;max
n on the regret of DOGD.

Fig. 14. Differences in cost increase versus V .

2846 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

centers, however, edge clouds are much more limited in
resources, making it generally impossible for them to pro-
cess all tasks alone, especially for computation-intensive
and latency-sensitive tasks. One traditional method is to
allow edge clouds to offload part or all workloads to the
remote cloud, but it may struggle to meet user demand for
low latency and relying on a single edge cloud significantly
limits MEC performance. Instead, Xiao et al. [13] proposed
a novel cooperation strategy, where edge clouds can help
each other jointly offload workloads. Such cooperative off-
loading is the main focus of this paper. Chen et al. [8] stud-
ied peer offloading for energy-constrained MEC in the cases
of centralized and autonomous coordination. However,
these works assume tasks can be offloaded only once.
Clearly, a multi-hop approach is more promising in exploit-
ing collaborative computing capabilities [14]. Lyu et al. [15]
presented a distributed optimization for cost-effectiveness
multi-hop offloading decisions. The major advantage of our
work is to capture both latency variability and trust risks in
collaboration, producing new challenges for multi-hop off-
loading design.

Trust Risks in Collaboration. Edge clouds are often
deployed by self-interested individuals, which may cause
crisis of trust or even security risks. Chen et al. [8] studied
how to avoid edge clouds’ refusal to participate under lim-
ited resources. Given high correlation between user mobil-
ity and service migration, He et al. [17] considered user
location privacy committed by untrusted MEC provider. To
address this, building trust-based interaction model to iden-
tify trustworthy edge clouds is necessary. Chen et al. [18]
proposed static trust network to manage trust risks in MEC
collaboration. Lin et al. [19] studied dynamic reputation-
based node selection in fog-assisted online gaming. There
also has been extensive research dedicated to monetary
incentive mechanisms for cooperative offloading [44], [45].
The focus of our work is not to design yet another monetary
incentive mechanism, but rather, to develop a multi-hop off-
loading mechanism built upon accumulated social trust
relationships, which essentially provides edge clouds with
non-monetary incentive. In general, trusted edge clouds are
more likely to execute tasks with high QoS. Actually, our
non-monetary incentive method can work in conjunction
with existing monetary ones. It would be an interesting
future work to integrate these two methods into hybrid
incentive [46] and study the reward sharing issue aligned
with fairness criterion, where edge clouds are rewarded by
their contributions to service offerings.

Latency Variability. Many services that rely on distributed
computing resources usually present high variability in

latency. In cloud computing, Zhu et al. [20] characterized
the latency variability problem, and Qiu et al. [21] exploited
latency variability to reduce latency. However, prior works
on latency minimization in MEC typically assume that com-
pletion latency can be determined in advance [8], [9], [16],
[18] or tasks are executed independently of each other [10],
which fails to capture resource contention in computation
offloading. Li et al. [4] considered a joint assignment optimi-
zation to maximize the proportion of offloading tasks that
can meet deadlines. To break this barrier, we resort to the
delayed online learning technique to facilitate task comple-
tion latency estimation, which is fed as input to online off-
loading policy.

7 CONCLUSION

In this paper, we study the online trusted cooperative off-
loading problem in MEC system, taking trust risks in collab-
oration and completion latency variability into explicit
consideration. We develop a novel online learning-aided
offloading mechanism for trusted collaborative MEC. To
accommodate latency variability, we harness the delayed
online learning technique to predict latency knowledge,
which serves as the basis for multi-hop offloading decision
making. Both theoretical analysis and trace-driven simula-
tions validate the effectiveness of our mechanism.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China 2017YFB1003000, 2018YFB1004705,
2018YFB2100302, and NSFC China (No. 61672342, 61671478,
61602303, 61532012, 61822206, 61829201), in part by the Sci-
ence and Technology Innovation Program of Shanghai
(Grant 17511105103, 18510761200), in part by the Open
Research Fund of National Mobile Communications
Research Laboratory, Southeast University Grant 2018D06,
and in part by the Shanghai Key Laboratory of Scalable
Computing and Systems.

REFERENCES

[1] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5,
pp. 637–646, Oct. 2016.

[3] Y. Sun, S. Zhou, and J. Xu, “EMM: Energy-aware mobility man-
agement for mobile edge computing in ultra dense networks,”
IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2637–2646,
Nov. 2017.

[4] T. Li, C. S. Magurawalage, K. Wang, K. Xu, K. Yang, and H. Wang,
“On efficient offloading control in cloud radio access network
with mobile edge computing,” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst., Jun. 2017, pp. 2258–2263.

[5] L. Wang, L. Jiao, J. Li, and M. M€uhlh€auser, “Online resource allo-
cation for arbitrary user mobility in distributed edge clouds,”
in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., Jun. 2017,
pp. 1281–1290.

[6] R. Kelly, “Internet of Things data to top 1.6 zettabytes by 2020,” Apr.
2015. [Online]. Available: https://campustechnology.com/articles/
2015/04/15/internet-of-things-data-to-top-1-6-zettabytes-by-2020.
aspx

[7] T. He, H. Khamfroush, S. Wang, T. L. Porta, and S. Stein, “It’s hard
to share: Joint service placement and request scheduling in edge
clouds with sharable and non-sharable resources,” in Proc. IEEE
38th Int. Conf. Distrib. Comput. Syst., Jul. 2018, pp. 365–375.

Fig. 15. Differences in backlog increase versus V .

LI ET AL.: LEARNING-AIDED COMPUTATION OFFLOADING FOR TRUSTED COLLABORATIVE MOBILE EDGE COMPUTING 2847

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

https://campustechnology.com/articles/2015/04/15/internet-of-things-data-to-top-1-6-zettabytes-by-2020.aspx
https://campustechnology.com/articles/2015/04/15/internet-of-things-data-to-top-1-6-zettabytes-by-2020.aspx
https://campustechnology.com/articles/2015/04/15/internet-of-things-data-to-top-1-6-zettabytes-by-2020.aspx

[8] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for
energy-constrainedmobile edge computing in small-cell networks,”
IEEE/ACMTrans. Netw., vol. 26, no. 4, pp. 1619–1632, Aug. 2018.

[9] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[10] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task off-
loading for mobile edge computing in dense networks,” in Proc.
IEEE Conf. Comput. Commun., Apr. 2018, pp. 207–215.

[11] A.-C. Pang, W.-H. Chung, T.-C. Chiu, and J. Zhang, “Latency-
driven cooperative task computing in multi-user fog-radio access
networks,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst.,
Jun. 2017, pp. 615–624.

[12] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5G networks: New paradigms, scenar-
ios, and challenges,” IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61,
Apr. 2017.

[13] Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for fog
computing networks with fog node cooperation,” in Proc. IEEE
Conf. Comput. Commun., Apr. 2017, pp. 1–9.

[14] M. Wang, H. Jin, C. Zhao, and D. Liang, “Delay optimization of
computation offloading in multi-hop ad hoc networks,” in Proc.
IEEE Int. Conf. Commun. Workshops, May 2017, pp. 314–319.

[15] X. Lyu, C. Ren, W. Ni, H. Tian, and R. P. Liu, “Distributed optimi-
zation of collaborative regions in large-scale inhomogeneous fog
computing,” IEEE J. Sel. Areas Commun., vol. 36, no. 3, pp. 574–586,
Mar. 2018.

[16] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D fogging: An energy-efficient
and incentive-aware task offloading framework via network-
assisted D2D collaboration,” IEEE J. Sel. Areas Commun., vol. 34,
no. 12, pp. 3887–3901, Dec. 2016.

[17] T. He, E. N. Ciftcioglu, S. Wang, and K. S. Chan, “Location privacy
in mobile edge clouds: A chaff-based approach,” IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2625–2636, Nov. 2017.

[18] L. Chen and J. Xu, “Socially trusted collaborative edge computing
in ultra dense networks,” in Proc. 2nd ACM/IEEE Symp. Edge Com-
put., Oct. 2017, Art. no. 9.

[19] Y. Lin and H. Shen, “CloudFog: Leveraging fog to extend cloud
gaming for thin-client MMOG with high quality of service,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 431–445, Feb. 2017.

[20] J. Zhu, Z. Zheng, and M. R. Lyu, “DR2: Dynamic request routing
for tolerating latency variability in online cloud applications,” in
Proc. IEEE 6th Int. Conf. Cloud Comput., Jun. 2013, pp. 589–596.

[21] Z. Qiu, J. F. Perez, and P. G. Harrison, “Variability-aware request
replication for latency curtailment,” in Proc. 35th Annu. IEEE Int.
Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[22] Z. Zheng and N. B. Shroff, “Online multi-resource allocation for
deadline sensitive jobs with partial values in the cloud,” in Proc.
35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[23] X. Li, H. Ma, W. Yao, and X. Gui, “Data-driven and feedback-
enhanced trust computing pattern for large-scale multi-cloud
collaborative services,” IEEE Trans. Serv. Comput., vol. 11, no. 4,
pp. 59–62, Jul. 2018.

[24] Y. Yao, L. Huang, A. B. Sharma, L. Golubchik, and M. J. Neely,
“Power cost reduction in distributed data centers: A two-time-
scale approach for delay tolerant workloads,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 200–211, Jan. 2014.

[25] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-efficient offloading for
mobile edge computing in 5G heterogeneous networks,” IEEE
Access, vol. 4, pp. 5896–5907, Aug. 2016.

[26] H. Wang, R. Shea, X. Ma, F. Wang, and J. Liu, “On design and per-
formance of cloud-based distributed interactive applications,” in
Proc. IEEE 22nd Int. Conf. Netw. Protocols, Oct. 2014, pp. 37–46.

[27] N. Dukkipati and N. McKeown, “Why flow-completion time is
the right metric for congestion control,” IEEE Access, vol. 36, no. 1,
pp. 59–62, Jan. 2006.

[28] C. -H. Tai, J. Zhu, and N. Dukkipati, “Making large scale deploy-
ment of RCP practical for real networks,” in Proc. IEEE 27th Conf.
Comput. Commun., Apr. 2008, pp. 2180–2188.

[29] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. San Mateo, CA, USA: Mor-
gan & Claypool, 2010.

[30] Y. Li, W. Dai, J. Bai, X. Gan, J. Wang, and X. Wang, “An
intelligence-driven security-aware defense mechanism for
advanced persistent threats,” IEEE Trans. Inf. Forensics Security,
vol. 14, no. 3, pp. 646–661, Mar. 2019.

[31] S. Shalev-Shwartz, “Online learning and online convex opti-
mization,” Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107–194,
Feb. 2012.

[32] X. Zhang, C. Wu, Z. Li, and F. C. M. Lau, “Proactive VNF provi-
sioning with multi-timescale cloud resources: Fusing online learn-
ing and online optimization,” in Proc. IEEE Conf. Comput.
Commun., Apr. 2017, pp. 1–9.

[33] K. Quanrud and D. Khashabi, “Online learning with adversarial
delays,” in Proc. 28th Int. Conf. Neural Inf. Process. Syst., Dec. 2015,
pp. 1270–1278.

[34] P. Joulani, A. GyM€orgy, and C. Szepesv�ari, “Online learning
under delayed feedback,” in Proc. 30th Int. Conf. Mach. Learn.,
Jun. 2013, pp. III-1453–III-1461.

[35] N. Chen, A. Agarwal, A.Wierman, S. Barman, and L. L. H. Andrew,
“Online convex optimization using predictions,” in Proc. ACM
SIGMETRICS Int. Conf. Meas. Model. Comput. Syst., Jun. 2015,
pp. 191–204.

[36] L. Kazemi and C. Shahabi, “GeoCrowd: Enabling query answer-
ing with spatial crowdsourcing,” in Proc. 20th Int. Conf. Advances
Geographic Inf. Syst., Nov. 2012, pp. 189–198.

[37] J. Edmonds and R. M. Karp, “Theoretical improvements in algo-
rithmic efficiency for network flow problems,” J. ACM, vol. 19,
pp. 248–264, 1972.

[38] X. Li, H. Ma, W. Yao, and X. Gui, “A trust-based framework for
fault-tolerant data aggregation in wireless multimedia sensor net-
works,” IEEE Trans. Depend. Sec. Comput., vol. 9, no. 6, pp. 785–797,
Nov. 2012.

[39] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on
markov decision process,” IEEE/ACM Trans. Netw., vol. 27, no. 3,
pp. 1272–1288, Jun. 2019.

[40] Institute of Real Estate Management, “Trends in office buildings
operations,” 2012. [Online]. Available: https://www.irem.org/File
%20Library/IREM%20Store/Document%20Library/IESamples/
12Samples/2012OfficeBuildTrends.pdf.

[41] [Online]. Available: https://code.google.com/p/googleclusterdata/,
Accessed: 2019.

[42] M. E. J. Newman, “Power laws, pareto distributions and zipf’s
law,” Contemporary Physics, vol. 46, no. 5, pp. 323–351, Sept. 2005.

[43] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms
for capacitated cloudlet placements,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 10, pp. 2866–2880, Oct. 2016.

[44] D. Zhao, X.-Y. Li, and H. Ma, “How to crowdsource tasks truth-
fully without sacrificing utility: Online incentive mechanisms
with budget constraint,” in Proc. IEEE Conf. Comput. Commun.,
Apr. 2014, pp. 1213–1221.

[45] M. Zeng, Y. Li, K. Zhang, M. Waqas, and D. Jin, “Incentive mecha-
nism design for computation offloading in heterogeneous fog
computing: A contract-based approach,” in Proc. IEEE Int. Conf.
Commun., May 2018, pp. 1–6.

[46] Y. Wang, X. Jia, Q. Jin, and J. Ma, “QuaCentive: A quality-aware
incentive mechanism in Mobile Crowdsourced Sensing (MCS),”
The J. Supercomput., vol. 72, no. 8, pp. 2924–2941, Aug. 2016.

Yuqing Li received the BS degree in communica-
tion engineering from Xidian University, Xi’an,
China, in 2014, and is currently working toward the
PhD degree in electronic engineering at Shanghai
Jiao Tong University, Shanghai, China. Her current
research interests include edge/mobile computing,
social aware networks, privacy/security, and net-
work economics.

Xiong Wang received the BE degree in electronic
information engineering from the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2014, and is currently working toward the PhD
degree in electronic engineering at Shanghai Jiao
Tong University, Shanghai, China. His current
research interests include crowdsourcing, data
mining, resource allocation, andmobile computing.

2848 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

https://www.irem.org/File%20Library/IREM%20Store/Document%20Library/IESamples/12Samples/2012OfficeBuildTrends.pdf
https://www.irem.org/File%20Library/IREM%20Store/Document%20Library/IESamples/12Samples/2012OfficeBuildTrends.pdf
https://www.irem.org/File%20Library/IREM%20Store/Document%20Library/IESamples/12Samples/2012OfficeBuildTrends.pdf
https://code.google.com/p/googleclusterdata/

Xiaoying Gan received the PhD degree in elec-
tronic engineering from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2006. She is currently
an associate professor in the Department of Elec-
tronic Engineering, Shanghai Jiao Tong University.
From 2009 to 2010, she worked as a visiting
researcher at the California Institute for Telecom-
munications and Information Technology, Univer-
sity of California San Diego. Her research interests
include network economics and wireless resource
management. She is amember of the IEEE.

Haiming Jin received the BS degree from Shang-
hai Jiao Tong University, Shanghai, China, in
2012, and the PhD degree from the University of
Illinois at UrbanaChampaign (UIUC), Urbana, IL, in
2017. He is currently a tenure-track assistant pro-
fessor with the John Hopcroft Center for Computer
Science and the Department of Electronic Engi-
neering, Shanghai Jiao Tong University. Before
this, he was a post-doctoral research associate
with the Coordinated Science Laboratory, UIUC.
His research interests include crowd and social

sensing systems, reinforcement learning, andmobile pervasive and ubiqui-
tous computing.

Luoyi Fu received the BE degree in electronic
engineering from Shanghai Jiao Tong University,
China, in 2009 and the PhD degree in computer
science and engineering from the same university,
in 2015. She is currently an assistant professor in
the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University. Her
research of interests are in the area of social net-
working and big data, connectivity analysis, and
randomgraphs.

Xinbing Wang (SM’12) received the BS degree in
automation from Shanghai Jiao Tong University,
Shanghai, China, in 1998, the MS degree in com-
puter science and technology from Tsinghua Uni-
versity, Beijing, China, in 2001, and the PhD
degree with a major in electrical and computer
engineering and minor in mathematics from North
Carolina State University, Raleigh, in 2006. Cur-
rently, he is a professor with the Department of
Electronic Engineering, Shanghai Jiao Tong Uni-
versity. His research interests include resource

allocation and management in mobile and wireless networks, cross-layer
call admission control, and congestion control over wireless ad hoc and
sensor networks. He has been amember of the technical program commit-
tees of several conferences including ACMMobiCom2012, ACMMobiHoc
2012, and IEEE INFOCOM2009-2013. He is a seniormember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI ET AL.: LEARNING-AIDED COMPUTATION OFFLOADING FOR TRUSTED COLLABORATIVE MOBILE EDGE COMPUTING 2849

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

