
1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

1

Cooperative Service Placement and Scheduling
in Edge Clouds: A Deadline-Driven Approach

Yuqing Li, Wenkuan Dai, Xiaoying Gan, Member, IEEE, Haiming Jin, Member, IEEE,
Luoyi Fu, Member, IEEE, Huadong Ma, Member, IEEE, and Xinbing Wang, Senior Member, IEEE

Abstract—Mobile edge computing enables resource-limited edge clouds (ECs) in federation to help each other with resource-hungry yet
delay-sensitive service requests. Contrary to common practice, we acknowledge that mobile services are heterogeneous and the limited
storage resources of ECs allow only a subset of services to be placed at the same time. This paper presents a jointly optimized design of
cooperative placement and scheduling framework, named JCPS, that pursues social cost minimization over time while ensuring diverse
user demands. Our main contribution is a novel perspective on cost reduction by exploiting the spatial-temporal diversities in workload
and resource cost among federated ECs. To build a practical edge cloud federation system, we have to consider two major challenges:
user deadline preference and ECs’ strategic behaviors. We first formulate and solve the problem of spatially strategic optimization without
deadline awareness, which is proved NP-hard. By leveraging user deadline tolerance, we develop a Lyapunov-based deadline-driven
joint cooperative mechanism under the scenario where the workload and resource information of ECs are known for one-shot global
cost minimization. The service priority imposed by deadline urgency drives time-critical placement and scheduling, which, combined
with cooperative control, enables workloads migrated across different times and ECs. Given selfishness of individual ECs, we further
design an auction-based cooperative mechanism to elicit truthful bids on workload and resource cost. Rigorous theoretical analysis and
extensive simulations are performed, validating the efficiency of JCPS in realizing cost reduction and user satisfaction.

Index Terms—Mobile edge computing, joint cooperative placement and scheduling, user deadline preference, ECs’ strategic behaviors

F

1 INTRODUCTION

T He proliferation of Internet-of-Things with ongoing mega-
trend in computing has given rise to mobile edge computing

(MEC), a new paradigm which brings cloud computing capa-
bilities to the network edge (e.g., small base stations) [1], [2].
As a result, MEC can offer users pervasive access to powerful
computing capability with low latency, underpinning a variety of
resource-hungry yet delay-sensitive applications such as mobile
gaming and augmented reality [3], [4], [5]. Nonetheless, compared
to dedicated datacenters, edge clouds (ECs) are more limited in
resources [6]. Although a few works on offloading computation
exceeding the EC’s capacity to the remote cloud have appeared
[7], [8], relying on a single EC greatly restricts MEC performance.

By exploiting edge cloud federation, MEC enables resource-
limited ECs to help each other with tasks [9]. Assisted by virtual-
ization techniques, such federation allows the ECs within specific
geographic regions to form a shared resource pool, realizing flex-
ible supply of distributed resources [10]. In general, the workload
and resource cost of ECs vary widely over time. Such variation
often uncorrelated among different ECs can complement one
another, offering opportunities for cost reduction via computation
offloading [3]. Extensive research has been devoted to cooperative
scheduling among federated ECs [6], [11], [12].

However, most of existing solutions rely on a fundamental
implicit assumption: ECs can process whatever types of task
requests from users, oblivious to the fact that mobile services are

• Y. Li, W. Dai, X. Gan, H. Jin, L. Fu, and X. Wang are with the School
of Electronic Information and Electrical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China. E-mail: {liyuqing, daiwenkuan119,
ganxiaoying, jinhaiming, yiluofu, xwang8}@sjtu.edu.cn.

• H. Ma is with the Beijing Key Laboratory of Intelligent Telecommunica-
tions Software and Multimedia, Beijing University of Posts and Telecom-
munications, Beijing 100876, China. E-mail: mhd@bupt.edu.cn.

heterogeneous and need to be provisioned first when requested
[13], [14], [15]. Provisioning a service requires placing the asso-
ciated data and code at the network edge, thereby allowing tasks
requesting the service to be processed [16], [17]. The problem with
this assumption is that unlike datacenters, each EC can only supply
certain storage resources, suggesting not all services can be placed
at the same time. Which services to place determines which type
of tasks to process, manifesting itself in the impact on scheduling
performance. Combined with spatially uneven workloads, the
bottleneck constraints of resources highlight the critical need for
cooperative service placement, which is vital to satisfying diverse
user demands. Therefore, the power of edge cloud federation could
not be fully unleashed, unless the optimizations of cooperative
placement and scheduling are performed jointly.

To build a practical edge cloud federation system, we have
to cope with two major challenges. The first challenge comes
from the joint cooperative control aligned with user deadline
preference. Our study highlights the role of deadline-sensitive
applications, which allow for delays in service only if the tasks
can be fulfilled before the deadlines. If cooperative control acts as
core strategy for spatial load balancing, then surely leveraging
deadline tolerance enables workload migrated across different
times. Prior work mostly focuses on global cost optimization
[11], [12], where user demands especially for those at peak hours
are always aggressively migrated to off-peak hours regardless of
deadline urgency, making user satisfaction impaired. Additionally,
edge cloud federation remains highly unexplored due to the lack
of distinction between time-critical and non-time-critical services.
Under limited resources, service priority must be at the epicenter
of cooperative control to avoid deadline violations for time-critical
services [18]. All of these necessitate the design of a judicious
mechanism with spatially-temporally optimized control.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

2

TABLE 1
Main results in this paper

Deadline
awareness

ECs’ strategic
behaviors Solution Optimality Section

× × DO-JCPS 2δ
δ−1

-competitive 4
X × D-JCPS Asymptotic 5.1
X X AD-JCPS Asymptotic 5.2

The second challenge is on the social cost minimization in case
of ECs’ strategic behaviors. By exploiting the diversities in work-
load and resource cost among different ECs, edge cloud federation
provides potential cost reductions via joint cooperative control.
A large body of research on cost minimization has emerged [4],
[6], [11], most of which implicitly assumes a cooperative scenario
where the EC workload and resource information is known for
global optimization. But as both offloading requester and provider,
ECs are often deployed by self-interested individuals (e.g. enter-
prise owners). They prefer to utilize better and cheaper resources
to fulfill tasks, suggesting the necessity of an efficient market to
elicit desirable behaviors from ECs for global optimization to
be implemented. Whereas as providers, ECs’ sharing offloading
may deplete remaining resources for their own use sooner than
expected [19]. Hence, the over-exploiting behaviors that harm
cooperation performance should be prevented, inevitably doubling
the difficulty in realizing benefits of edge cloud federation.

To tackle these challenges, we formulate the joint cooperative
placement and scheduling models for cases with and without
deadline awareness. The long-term social cost minimization is
achieved by leveraging spatial-temporal variations of workload
and resource cost among federated ECs. For deadline-oblivious
case, we design an online combinatorial algorithm to decom-
pose the NP-hard multi-slot problem into multiple single-slot
problems solvable through branch-and-bound. For deadline-driven
case, the temporal evolution of deadline urgency is captured by
priority queues, which, combined with task queues, provide an
integration of service priority to decision makings. By harnessing
Lyapunov techniques, the one-shot cost minimization problem is
derived from deploying the most time-critical services and utiliz-
ing resources as much as possible. Given selfishness of ECs, we
design an auction-based cooperative mechanism that encourages
them to truthfully disclose workload and resource cost, where the
winner determination under truthful bidding is proved equivalent
to one-shot global optimization. For more clarity, we list the main
results in Table 1, and make the key contributions as follows.

• We propose JCPS, a novel online joint cooperative place-
ment and scheduling framework that realizes cost reduction
by exploiting spatial-temporal diversities in workload and
resource cost among federated ECs. To the best of our
knowledge, we’re the first to explore the benefits of edge
cloud federation by taking both user deadline preference and
ECs’ strategic behaviors into account.

• We formulate the problem of spatially strategic optimization
without deadline awareness, and design a 2-approximation
algorithm and an online algorithm that work together to solve
with a competitive ratio of 2δ

δ−1 . By leveraging user deadline
tolerance, the spatial-temporal optimality of the problem is
expected to achieve. The service priority imposed by dead-
line urgency drives time-critical placement and scheduling,
which, combined with edge cloud federation, enable the
workload migrated across different times and ECs.

• With deadline awareness, we consider both the scenario

where ECs act cooperatively with workload and resource
information known for global optimization, and the scenario
where ECs select strategies to solely pursue their own inter-
ests. For the latter, we design an auction-based mechanism to
elicit truthful bids on workload and resource cost from ECs.
We theoretically prove that our mechanisms can guarantee
cost optimality while bounding computation workloads and
deadline violations, even in case of self-interested ECs.

In what follows, we discuss related works in Section 2 and
introduce the system model in Section 3. Design and analysis of
the joint cooperative mechanisms are presented in Sections 4 and
5. Simulations and conclusions are given in Sections 6 and 7.

2 MOTIVATION AND RELATED WORKS

Why Edge Cloud Federation. MEC has emerged as a com-
pelling paradigm by providing cloud-like computing capabilities
on the network edge [2], [3], [4]. However, the limited resources
available to individual ECs (a.k.a. fog [3]) remain the biggest
obstacle [6]. There are mainly two lines of efforts to tackle it. The
first is to offload the unsatisfied tasks of ECs to the remote cloud.
Tong et al. [7] presented a hierarchical MEC structure among
users, ECs and the cloud, where the tasks exceeding ECs’ capacity
will be offloaded to the cloud. Xiao et al. [8] studied the tradeoff
between user QoE and fog nodes’ power efficiency for three-layer
fog computing system. However, this approach highly relies on
a single EC, limiting the MEC performance. The second is to
have edge cloud federation as a supplement to MEC. Assisted
by virtualization technology, such practice which is also the main
focus of this paper, can maintain flexible supply of distributed
shared resources [10]. Chen et al. [11] leveraged computation
offloading between ECs to minimize system-wide latency. The
collaborative MEC platform was designed in [12] to incentivize
ECs to form coalitions and share resources. However, most of
prior work assumes that ECs can process whatever type of tasks
regardless of service availability [3], [4], [6], which is central to
the MEC system design subject to limited storage resources [10].
To break this barrier, we focus on a jointly optimized design of
cooperative placement and scheduling for edge cloud federation.

Why Joint Cooperative Placement and Scheduling. There
has been growing interest in designing service placement schemes
for MEC [13]. Pasteris et al. [14] addressed the problem of placing
multiple services to maximize the total reward. Wang et al. [15]
studied the dynamic service placement problem for mobile micro-
clouds with multiple users and service instances. Which services
to place allows which type of tasks to be processed, thereby
affecting scheduling performance. But none of the above solutions
considered the interactions between service placement and task
scheduling. Instead, we highlight the critical need for the joint
cooperative placement and scheduling. There were similar works
in the past that we can build up on. For example, Zeng et al. [16]
systematically placed task images and scheduled tasks on ECs
equipped with storage and computing resources. He et al. [10]
optimized the joint placement and scheduling with the sharable
(storage) and non-sharable (computing, transmission) resources.
To reduce cost and improve stability, Farhadi et al. [17] pro-
posed a two-time-scale MEC framework for joint placement and
scheduling. Another focus of research has been to develop joint
caching and scheduling schemes for MEC [20], [21]. By modeling
collaboration across edge caches as content multicasts, Shukla et
al. [22] considered a joint caching and request routing problem for

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

3

 Service placement

 Intra-cloud
processing

 Service placement

 Intra-cloud
processing

 Internet

Remote Cloud

LAN

Edge CloudAPUser

All possible

services

Task

 Inter-cloud
offloading

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

1

1

1

11

3

3

 Intra-cloud
droppding

1
Fig. 1. Illustration of the edge cloud federation system. Different colors
capture different types of services or tasks, and the numbers on squares
denote user deadline demands.

cost minimization subject to cache capacity. It is worth noting that
content caching and service placement may look similar as they
both store a given resource and use it back when requested. They
are, however, substantially different: the former focuses on storage
constraints, while the latter has to take storage, computing and
transmission constraints into account. All of the aforementioned
studies typically either focus on spatial scheduling optimization, or
assume a cooperative scenario where the ECs make decisions for
global optimization. By contrast, our work pursues the spatially-
temporally optimized cooperative control by capturing both user
deadline preference and ECs’ strategic behaviors, which produces
new challenges for edge cloud federation system design.

Why Deadline-Driven Scheduling. There exists a large body
of work for scheduling deadline-constrained tasks which need to
be processed within the acceptable time interval [23], [24]. In
practice, users usually show high heterogeneity in deadline toler-
ance, suggesting the potential performance boost if the distinction
between time-critical and non-time-critical services is properly
addressed. In cloud computing, Vamanan et al. [25] proposed a
deadline-aware transport protocol which prioritizes near-deadline
flows over far-deadline ones. Zheng et al. [26] studied the multi-
resource allocation for deadline-sensitive tasks, validating the ben-
efit of deadline awareness in scheduling. Our study highlights the
deadline restriction in context of MEC. Li et al. [24] considered a
joint assignment to maximize the ratio of offloaded tasks that meet
the deadlines. To provide differentiated service provision, Katsalis
et al. [18] proposed a SLA-driven scheduling method to minimize
SLA violations for time-critical services. However, both of them
focus on single-time-point optimization or finite differentiated
service levels. In contrast, we target a combinatorial deadline-
driven scheduling scheme, which is expected to: 1) leverage user
deadline preference to optimize system efficiency across temporal
domain; and 2) integrate edge cloud federation into strategic
decision making for spatially-temporally optimized online control.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 Edge Cloud Federation System
Consider a MEC provider with a set N of federated ECs

densely deployed and connected by the same local area network
(LAN). Each EC endowed with cloud-like computing and storage
capabilities, is collocated with an access point (AP) and serves a
dedicated set of users in its coverage1. The system runs in a time-
slotted fashion for t ∈ T = {0, · · · , T − 1}, where the slot is a
much slower time scale than that of task scheduling [11].

1. Unlike cloud datacenters, ECs suffer from limited coverage due to
physical limitations (e.g., limited transmit power), meaning that the user’s task
might not be finished within one EC if it moves out of the coverage [4], [10].

TABLE 2
Major Notations

Notation Description
N , I , R, T sets of ECs, users, services and slots
n, i, r, t indexes of ECs, users, services and slots

ri, ni, ti, di requested service and EC, arrival time, deadline
λr, εr expected data size, workload for per type-r task

Sn, frn, ymax storage, computing and dropping capacity
Ern, C[t] sharing budget, social cost
χr , ηr income, dropping penalty for per type-r task

cn,m[t], crn[t] offloading and placement cost
arn[t], αn,i[t] admission, offloading decision variables

βrn[t], xn,i[t], yn,i[t] placement, processing, dropping decision variables
Dr
n[t], Arn[t] sets of service demands and admitted tasks

Qrn[t], αrn[t] sets of queued tasks and offloaded tasks
Qrn, Zrn, Hr

n task queues, virtual incentive and priority queues

The system is to provision R types of deadline-sensitive ser-
vices. As an abstraction of applications, service is hosted by ECs
and then requested by users in the form of tasks. Each EC hosts
services of the same type in a time slot, which can change across
different slots [21]. User i ∈ I randomly arrives at the system in
slot ti ∈ T by submitting one specific task of type ri ∈ R via
the EC ni ∈ N covering (i.e., directly associated with) it. λi is
the input data size of the task (in bits), and requires εi slots to
process. Task processing doesn’t need to be continuous [28]. The
task can be processed in any slot as long as the total processing
time meets εi before the deadline (i.e., maximum tolerable task
completion delay), denoted by di with 0 < di ≤ dmax, capturing
users’ heterogenous deadline tolerance towards service offerings.
Formally, the task i submitted in slot t ∈ T can be specified by
a tuple 〈ti, ni, ri, λi, εi, di〉. To simplify the system model, we
assume that the tasks of the same type are similar in data size
and workloads [27]. For any type-r task, the expected data size is
λr (in bits), and the expected number of slots required to finish
processing is εr , which is referred to the workload2 of the task
[27]. In particular, λr and εr are considered to be randomly drawn
from Oλ ∈ [λmin, λmax] and Oε ∈ [εmin, εmax], respectively3.

We target a joint cooperative mechanism with the main idea
depicted in Fig. 1. Users can arrive in any slot by submitting het-
erogeneous tasks via associated APs. By leveraging the variations
in workloads and resource costs among federated ECs, the MEC
provider determines whether to admit newly arrived tasks, and if
admitted, charges and offloads them to the ECs. For each EC, the
provider judiciously decides which services to place under limited
storage capacity. Given placement decisions, priority-based intra-
cloud processing and dropping are performed with task priority
captured by deadline urgency. Here “dropping” a task just means
not processing it on the network edge, and a dropped task will
be processed in the remote cloud, typically at a higher cost.
For notation, the bold uppercase letters X denote sets, and non-
bold letters x, X denote scalars, where the dependencies between
relevant sets or scalars are captured by superscript (̂·). Moreover,
the superscript r and subscripts n, i denote service r, EC n and
task i. To facilitate reading, we list the major notations in Table 2.

2. By modeling task workload like this, the duration of each slot for
scheduling can be comparable to the time scale of service placement. Here
we only focus on the single-time-scale representation, and a more general time
scale representation will be discussed in Section 3.3.3.

3. This assumption is realistic especially for recurrent workloads. Take video
streaming for example. Since user requests for this application always exhibit
regular service demand patterns, it is possible to predict the input data size and
processing time from the historical experience. Methods for quantifying task
size and workload are beyond the scope of this paper.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

4

3.2 Joint Cooperative Control Model
Similar to cloud datacenters [29], each EC consists of a front-

end server and a back-end cluster. The former is responsible for
inter-cloud scheduling including task admission and offloading,
while the latter utilizes the provisioned resources to process the
offloaded tasks, which can be cast into a joint strategy making for
intra-cloud placement and scheduling.

3.2.1 Inter-Cloud Scheduling Control
1) Task admission. Users arrive at the system by submitting

heterogenous task requests. Denote the set of type-r tasks that
arrive at EC n ∈ N in slot t ∈ T as Dr

n[t] with the size Dr
n[t] =

|Dr
n[t]| ≤ Dmax, capturing uneven service demands across ECs

and slots. To prevent system overload, only a subset of tasks are
admitted. We introduce the binary admission variable arn[t], where
arn[t] = 1 means EC n accepts all newly arrived type-r tasks in
slot t, and arn[t] = 0 otherwise. The set of type-r tasks admitted
via n can be described as Ar

n[t], which is a subset of Dr
n[t].

2) Task offloading. Tasks will be offloaded to ECs once
they are admitted. Denote Ar[t] = ∪n∈NAr

n[t] with the size
Ar[t] = |Ar[t]| as the set of all type-r tasks admitted in slot
t waiting to be offloaded. In this work, we focus on one-hop
offloading case, where the tasks can only be offloaded once. Let
αn,i[t] ∈ {0, 1} denote whether task i is offloaded to EC n in t.
The set of type-r tasks offloaded to EC n in slot t is captured by
αrn[t] = {i|αn,i[t] = 1, ∀i ∈ Ar[t]}. The cost for offloading per
bit workload out of EC m to EC n in slot t is cn,m[t], which is
associated with the incurred energy consumption, and bandwidth
usage and price. Here we consider a realistic environment that
dynamically changes, where the transmission cost is uncertain and
fluctuating since it depends on time-varying network conditions
among ECs [6]. Since the offloading cost from the user to its
requested EC is irrelevant to the joint cooperative control later, we
will omit it for simplicity in the rest of this paper.

3.2.2 Intra-Cloud Placement and Scheduling Control
1) Service placement. ECs can only place a subset of services

at the same time, under the limited capacity to store the service-
related data/code. Placing a service in the EC allows this type of
tasks to be processed. To satisfy volatile user demands, ECs have
to judiciously decide which services to place. Define the binary
variable βrn[t] ∈ {0, 1} to capture if service r ∈ R is placed by
EC n ∈ N in slot t ∈ T . The corresponding placement cost crn[t]
(e.g., power consumption for running servers) is time-varying.

2) Task processing/dropping. Given user deadline tolerance,
delays in service are acceptable if the tasks can be completed
before deadlines. We model the potential dropping of a task when
it fails to be fulfilled before the deadline. Among all provisioned
services, the EC next determines which tasks to schedule. Denote
Qr
n[t] as the set of type-r tasks queued in EC n at the beginning

of slot t. Since intra-cloud scheduling is performed during the
slot when tasks are offloaded, all queued tasks including newly
offloaded ones might be processed or dropped in this slot. For
convenience, denote Q̂r

n[t] = Qr
n[t] ∨ αrn[t] with the size Q̂rn[t] =

|Q̂r
n[t]|, capturing the set of type-r tasks that can be scheduled by

EC n in t. Both updates of Qr
n[t] (at the end of t − 1) and αrn[t]

(at the beginning of t) may bring about the dynamics of Q̂r
n[t].

Let xn,i[t] ∈ {0, 1} and yn,i[t] ∈ {0, 1} be the indicators
about whether task i ∈ Q̂r

n[t] is processed and dropped in slot
t. The total number of slots of task i that are served by slot
t is xi[t] =

∑t
τ=1 xn,i[τ]. We obtain the processing rate for

type-r tasks, denoted by xrn[t] =
∑
i∈Q̂r

n[t] xn,i[t]. Similarly, the
dropping rate in terms of service r acquired by n in slot t is
yrn[t] =

∑
i∈Q̂r

n[t](ε
r − xi[t])yn,i[t]. During slot t, the task i will

be deleted from Q̂r
n[t] if it is completely processed or dropped,

i.e., Q̂r
n[t]\{i} if xi[t] = εr or yn,i[t] = 1. At the end of slot t,

Qr
n[t] is updated to the set of remaining tasks in Q̂r

n[t].

3.3 Problem Formulation
3.3.1 Constraints of The Problem

1) Capacity Constraint. We highlight the limited storage and
scheduling capacities of ECs as follows:∑

r∈R

βrn[t] ≤ Sn, ∀n ∈N , t ∈ T , (1)

xrn[t] ≤ βrn[t]frn, ∀r ∈ R, n ∈N , t ∈ T , (2)
yrn[t] ≤ ymax, ∀r ∈ R, n ∈N , t ∈ T , (3)

where (1) ensures the number of services that the EC can place
in one slot is no more than its storage capacity; (2) indicates any
type-r task can be processed only if the service r is placed and
at most frn (referred to the maximum processing rate) tasks are
processed in one slot for the guaranteed best-effort service; (3)
specifies the maximum dropping rate of EC n for type-r tasks by
placing an upper bound ymax for the amount of dropped workloads.

2) Deadline Constraint. Given any task set Q̂r
n[t], every task i

only gets either processed or dropped before its deadline di, i.e.,
t · xn,i[t] ≤ ti + di,∀i ∈ Q̂r

n[t], r ∈ R, n ∈N , t ∈ T , (4)

t · yn,i[t] ≤ ti + di,∀i ∈ Q̂r
n[t], r ∈ R, n ∈N , t ∈ T . (5)

3) Workload Constraint. For any queued type-r task i, there is
no extra value for EC n to serve it more than εr slots, i.e.,

xi[t] ≤ εr,∀i ∈ Q̂r
n[t], r ∈ R, n ∈N , t ∈ T . (6)

4) Conservation Constraint. This constraint enforces that in
each slot, the total workload offloaded by the EC (including its
retained tasks) equals its admitted workload, i.e.,∑

i∈Ar
n[t]

∑
m∈N

αm,i[t] = arn[t]Dr
n[t], ∀r ∈ R, n ∈N , t ∈ T . (7)

The intuition is that each admitted task is guaranteed to be
offloaded right away, which is vital for deadline-sensitive services.

5) Stability Constraint. The number of type-r tasks offloaded
to n in each slot cannot exceed its maximum processing rate, i.e.,∑

i∈Ar[t]

αn,i[t] ≤ frn,∀r ∈ R, n ∈N , t ∈ T . (8)

6) Incentive Constraint. This constraint is specified for re-
source consumption in sharing offloading. Denote Âr

n[t] =

∪m∈N\{n}Ar
m[t] as the set of type-r tasks admitted by peers that

EC n can cooperate in slot t. To explore collaborative computing
potentials, MEC provider always forces ECs with sufficient re-
sources to help peers with task offloading frequently. Such sharing,
however, depletes remaining resources for its own use sooner than
expected and incurs additional cost (for receiving requests and
returning responses), thereby reducing ECs’ sharing willingness.
To avoid this, we introduce the sharing budget Ern for EC n on its
helping peers offload type-r tasks over the time horizon T , i.e.,

1

T

∑
t∈T

ern[t] ≤ Ern, ∀r ∈ R, n ∈N , (9)

where ern[t] =
∑
i∈Âr

n[t] αn,i[t] ≤ (N − 1)Dmax captures n’s total
resource consumption for helping peers with type-r tasks in t.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

5

Remark. The joint cooperative control decisions are not
independent. This can be reflected in the following aspects: (i)
under capacity, deadline, workload constraints, intra-cloud control
interacts with each other; (ii) conservation constraint shows inter-
cloud offloading is performed subject to admission control; (iii)
deadline and workload constraints indicate intra-cloud scheduling
is conducted on the set Q̂r

n[t], i.e., the newly offloaded tasks can
also be processed or dropped in current slot. (iv) (2) suggests task
processing is performed on the basis of placement control.

3.3.2 Online Joint Cooperative Control Problem
In the edge federation system, the social welfare generated

in each slot is the difference between total service income and
total service cost. The total service income of admitting the
tasks of different types in slot t is SI [t] =

∑
n,r χ

rDr
n[t]arn[t],

where χr ∈ (0, χmax] is the income for admitting per type-r
task. The instantaneous total service cost is defined as the
sum of placement cost that covers the resource consumption
for processing tasks, and scheduling cost consisting of inter-
cloud offloading cost and expenditure on penalty (e.g, resource
consumption for offloading to the remote cloud and processing
there) occurred if there are dropped tasks. That is, SC [t] =∑
n,r

(
crn[t]βrn[t] +

∑
i∈Âr

n[t]

λrcn,ni [t]αn,i[t] +
∑

i∈Q̂r
n[t]

ηryn,i[t]

)
,

where ηr is the penalty for dropping per type-r task.
Maximizing the social welfare over the time horizon T is

equivalent to minimizing the overall (average) social cost over
all slots, i.e., 1

T

∑
t C[t] = 1

T

∑
t(S

C [t] − SI [t]). The goal of the
MEC provider is to make joint cooperative control to minimize
the overall social cost while respecting the aforementioned con-
straints. The problem of interest can be formulated as follows:

min
1

T

∑
t∈T

C[t] (10)

s.t. Constraints (1)-(9).

Actually, (10) is approximately equivalent to maximizing the
number of users served on the edge, where the dropped tasks are
offloaded to the remote cloud for processing at a higher cost.

Edge cloud federation enables tasks to be offloaded away
from overloaded or high-cost ECs to lightly-loaded or low-cost
ones, offering opportunities for cost reduction or task completion.
In practice, users usually show heterogenous deadline tolerance,
which begs the question: how to choose between more valuable
tasks with large deadlines and less valuable yet more emergent
tasks subject to limited resources. Deadline-driven scheduling is
promising to best satisfy user demands [26], whose main idea is to
schedule a few tasks with small deadlines besides those tasks with
high values in each slot. If edge cloud federation acts as spatial
optimization strategy in a single slot, then surely deadline-driven
scheduling allows workloads to be migrated across different times,
thus optimizing the system efficiency across temporal domain.
Despite these advantages of deadline awareness, we notice that
it is still necessary to study deadline-oblivious algorithms since
they are often easier to implement and have wider applications,
especially when no exact or complete task deadline information is
available. Here deadline-oblivious suggests the deadline informa-
tion is not used in decision making. This case actually serves as
the spatially optimized benchmark. In what follows, we propose
JCPS, a novel online joint cooperative placement and scheduling
framework for two cases of edge cloud federation.

3.3.3 Discussions
Time scale representation. This work is to offer a deadline-

driven design for cost-efficient MEC systems via joint cooperative
placement and scheduling, whose time scales are comparable
with task workloads in terms of processing time [28]. Notice
that the proposed solution cannot be directly applied to general
computation tasks, whose workloads are captured by the required
CPU cycles. In this case, task processing takes shorter time than
placing services, and adjusting placement as frequently as schedul-
ing would incur high operation cost and system instability. A
promising alternative is two-time-scale representation, where the
time scales of placement is split from scheduling. There have been
studies on two-time-scale optimization designs [29]. Farhadi et al.
[17] proposed a two-time-scale framework for joint placement and
scheduling. But due to correlations across decision intervals, they
only focus on the joint control in one frame, and the formulation
of multi-frame optimization problem is simply presented without
further analysis. As a future work, it is worth studying the temporal
decision correlations in two-time-scale system designs.

User mobility. Our proposed solutions can also be extended
for the case where users move erratically during task processing.
The assumption is that users only move within the coverage
of requesting ECs. The joint cooperative control is independent
from user mobility due to the unchanged correspondence between
users and requesting ECs. But if users move out the coverage,
that’s another story. Imagine after submitting a request to EC ni,
user i moves to the coverage of another EC n. If the requested
service is still placed in ni, the perceived latency would greatly
increase due to the increased transmission distance. To optimize
user experience, the service profile should be actively migrated
across multiple ECs to follow user mobility, yet which would incur
a huge additional cost. How to navigate such performance-cost
tradeoff has been studied in earlier works [2]. A full analysis of
dynamic service migration under user mobility is out of the scope
of this work. But it surely will be interesting for future research to
study the mobility-aware joint cooperative control problem.

4 ONLINE JOINT COOPERATIVE PLACEMENT AND
SCHEDULING FOR DEADLINE-OBLIVIOUS CASE

We begin with a simple but classical setting, the deadline-
oblivious case [10], [16], and develop a joint cooperative place-
ment and scheduling mechanism (DO-JCPS), using subroutine
Aslot running in each slot. For guaranteed service quality, the
following locality constraint is typically highlighted in related
works [10] by enforcing tasks can only be offloaded to ECs that
place the desired services, i.e.,

αn,i[t] ≤ βrn[t],∀i ∈ Ar[t], r ∈ R, n ∈N , t ∈ T . (11)

4.1 Design of Approximation Algorithm Aslot
We first formulate the single-slot deadline-oblivious joint co-

operative placement and scheduling problem (sDO-JCPS):

min
∑
n,r

crn[t]βrn[t] +
∑

i∈Âr[t]

ĉn,i[t]αn,i[t]

 (12)

s.t. Constraints (1)-(8), (11),

arn[t], αn,i[t], β
r
n[t] ∈ {0, 1},∀i ∈ Ar[t], r ∈ R,n ∈N ,

which warrants some discussions, especially for those different
from (10). Conservation constraints allow the elimination of

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

6

Dr
n[t] from the objective, and scheduling cost λrcn,ni [t] − χr is

replaced by regulated cost ĉn,i[t] (to be specified later). To ensure
fairness, tasks are processed in order and dropped if exceeding
the deadlines. Thus, processing and dropping decisions are the
consequence of placement ones, making intra-cloud joint control
to be a pure placement problem. Incentive constraints are removed
since this long-term constraint couples shared offloading (short for
“sharing resources for helping other ECs with task offloading”)
decisions across all slots, beyond the scope of single-slot problem.

For any specific type of service, offloading tasks to ECs falls
short into the capacitated facility location problem (CFLP), which
has proven NP-hard [30]. Specifically, in CFLP, there is a set F
of potential facilities and a set U of users. Each facility i ∈ F
has a capacity si. Establishing facility i incurs opening cost fi
and serving user u ∈ U incurs service cost ci,u. The objective
is opening a subset of facilities to serve users with minimal cost
under capacity constraints. Actually, placing service r among ECs
can be viewed as a facility location problem, where opening a
facility parallels placing one service in an EC and offloading tasks
to it. Hence, sDO-JCPS for any type of service is NP-hard. A
problem of APX-hardness is a set of NP-hard problems that can
be solved via approximation methods [31]. Given APX-hardness
of sDO-JCPS, we resort to approximation algorithms to obtain a
near-optimal solution with computation efficiency.

Definition 2. An algorithm is called a (γp, γs)-approximation
algorithm for sDO-JCPS in (12), if for every instance I of sDO-
JCPS and every solution φ of I with placement cost Cplace(φ)

and scheduling cost Cschedule(φ), the cost of the solution found
by the algorithm is at most γpCplace(φ) + γsCschedule(φ).

Combining stability and locality constraints yields∑
i∈Ar [t] αn,i[t] ≤ βrn[t]frn. Given constant σ ∈ [0, 1], we deduce

the underlying condition, i.e.,
∑
n,r,i

σcrn[t]

frn
αn,i[t] ≤

∑
n,r

σcrn[t]βrn[t].

On this basis, we generate the following relaxation problem:

min
∑
n,r

(1− σ)crn[t]βrn[t] +
∑

i∈Âr [t]

αn,i[t]

(
σcrn[t]

frn
+ ĉn,i[t]

)
(13)

s.t. Constraints (1)-(7), (11),
arn[t], αn,i[t], β

r
n[t] ∈ {0, 1}, ∀i ∈ Ar[t], r ∈ R, n,∈N ,

which establishes a lower bound of sDO-JCPS. By adopting
similar techniques used in [32], we obtain the following lemma.

Lemma 1. Let σ = γs
γp+γs

∈ [0, 1]. Any (γp, γs)-
approximation algorithm that solves (13) also yields a (γp + γs)-
approximation algorithm for sDO-JCPS.

Proof. See Appendix A.
Lemma 1 provides the convenience to consider only problem

(13) hereafter, and its integer linear formulation allows us to
apply branch-and-bound algorithm [5], [33] to solve it optimally.
The solution called Aslot is shown in Alg. 1. Denote U∗ as
the optimal value of sDO-JCPS problem’s objective function,
and P as the problem set with a lower bound L and an upper
bound U of U∗. It is initialized as p0 with integer constraints
relaxed to linear ones, i.e., arn[t], αn,i[t], β

r
n[t] ∈ [0, 1]. For any

p ∈ P , the solution by linear program relaxation serves as a
lower bound Lp of the solution to p0. The branch-and-bound
process is divided into multiple iterations. In each iteration, we
locate problem p with the minimum Lp and set L = Lp. Any
feasible solution to p serves as an upper bound of Up and the
tightest upper bound of U can be updated (lines 4-17). If L is

Algorithm 1: Aslot for sDO-JCPS Problem
1 Set Lp as the solution to (13), P = {p0}, U =∞;
2 while P 6= ∅ do
3 Select p ∈ P with minimal Lp and result ηp; Let

L = Lp; Set Up as the solution to p by rounding;
4 if Up < U then
5 U∗ = Up, U = Up;
6 if L ≥ U then
7 Return the optimal solution U∗;
8 else
9 Remove all problems p′ ∈ P with Lp′ ≥ U ;

10 foreach x ∈ {arn[t], αn,i[t], β
r
n[t]} do

11 if there are unfixed x in p then
12 Set x with maximal ηp by y;

13 Set y = dye in p1, y = byc in p0; fix associated
variables by constraints (1)-(7), (11);

14 foreach i ∈ {0, 1} do
15 Solve pi by relaxing unfixed variables and

obtain Lpi ;
16 if Lpi < U then
17 Put pi into P .

no less than U , U∗ is returned. Otherwise, decompose p with
two subproblems p0, p1 by branching binary variables (lines
10-13). Different from traditional branch-and-bound algorithms,
sDO-JCPS has some problem-specific characteristics: by fixing
one variable, other variables could be fixed right away as many
as possible due to their correlation constraints. For example, when
arm[t] = 0, αn,i[t] = 0, ∀i ∈ Ar

m[t] since no task is admitted. This
feature allows us to design an efficient acceleration approach to
reduce complexity of (13)’s relaxed problem. We fix variables in
order of arn[t], βrn[t], αn,i[t], and for each type of variables, they are
fixed in decreasing order of ηp, the result of p’s relaxed problem.
By adopting a greedy approach like rounding, the number of
iterations to achieve the desired solution is reduced.

Theorem 1. Aslot is a 2-approximation for sDO-JCPS.

Proof. See Appendix B.

4.2 Design of Deadline-Oblivious Mechanism DO-JCPS
We next develop an online mechanism DO-JCPS to cope

with the multi-slot problem (10) without deadline awareness. The
algorithm works as follows (see Alg. 2). In each slot t, only ECs’
workload and resource cost at and before t are known, i.e., the joint
cooperative control is conducted without future knowledge. Given
the placement decisions, the queued tasks are processed in order
until exceeding the deadlines or satisfying the workloads (lines
9-16). Under incentive constraint, ECs have a sharing budget for
helping others with task offloading over T , making shared offload-
ing decisions coupled over time. If providing shared offloading
service in one slot, the EC’s residual shared capacity will decrease
and it will be less likely to be selected for offloading future tasks.
A promising approach is to scatter the shared offloading capacity
intelligently over T [34]. We introduce regulation factor µrn[t] to
adjust n’s scheduling cost for helping offload type-r tasks in slot
t as the input to Aslot. Since n’s shared capacity initialized to
TErn decreases over time, we initialize µrn[t] as 0 (line 1) and
scale it up for any selected EC.By regulating scheduling cost (line

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

7

Algorithm 2: Online Mechanism DO-JCPS
1 µrn[0] = 0, βrn[0] = 0, xi,0 = 0, Q̂r

n[0] = ∅, ∀i, r, n;
2 δ = maxr,n,t

TEr
n

ern[t]+1
;

3 for Each slot t ∈ T do
4 ĉn,i[t] = λrcn,ni [t]− χr + βrn[t− 1]µrn[t− 1],∀i, r, n;
5 Run Aslot to obtain decisions arn[t], αn,i[t], β

r
n[t];

6 for Each cloud n ∈N , service r ∈ R do
7 Q̂r

n[t]← Q̂r
n[t− 1] ∨αrn[t];

8 if βrn[t] = 1 then
9 Select the first frn tasks from Q̂r

n[t] by ti;
10 for Each task i ∈ Q̂r

n[t] do
11 if i is selected then
12 xi[t] = xi[t− 1] + 1;
13 else
14 xi[t] = xi[t− 1];

15 Q̂r
n[t]← Q̂r

n[t]\{i} if xi[t] ≥ εr or
t− ti ≥ di;

16 ern[t] =
∑
i∈Âr

n[t] αn,i[t], ∀r, n;
17 if ern[t] > 0 then

18 µrn[t] = µrn[t− 1](1+
βr
n[t−1]

γTEr
n

)+
min
m

λrcn,m[t]−χr

γδTEr
n

;
19 else
20 µrn[t] = µrn[t− 1].

4), µrn[t] can be interpreted as unit cost for using residual capacity.
How to scale it up concerns whether to respect residual shared
capacity properly. If setting it to a large value, Aslot will be
too conservative in selecting ECs with low residual capacity in
early slots and some cost-effective ECs may end up with being
unallocated, which causes the waste of resources; otherwise, the
cheap ECs’ capacity will be used up too early, forcing tasks to be
offload to expensive ones later on. The updating rule of µrn[t] is
shown in lines 17-20, where other ECs’ costs remain intact.

In Alg. 2, the outer for loop runs T slots. In each slot,
calculate the regulated cost in O(Ar[t]) steps and apply the
branch-and-bound algorithm to determine the joint cooperative
control with complexity of O(2N) [5]. After that, the inner
for loop is terminated after NR iterations, in each of which
select tasks to process in O(Q̂rn[t]log(Q̂rn[t])) steps and perform
updating in O(Q̂rn[t] + Ar[t]) steps. Finally, update the regula-
tion factor in O(N) steps. Overall, the complexity of Alg. 2 is
O(T (Ar[t] + 2N +NR(Q̂rn[t](1 + log(Q̂rn[t])) +Ar[t] +N))).

Lemma 2. Alg. 2 yields a feasible solution to problem (10).

Proof. See Appendix C.

Theorem 2. The competitive ratio of Alg. 2 is 2δ
δ−1 .

Proof. See Appendix D.

The competitive ratio of Alg. 2 depends on δ, the maximum
ratio between ECs’ shared capacity and workload in one slot.
When δ → ∞, the competitive ratio approaches 2, indicating
if the shared workload in any slot is much smaller than shared
capacity, the cost increase induced by online loss is negligible.

5 ONLINE JOINT COOPERATIVE PLACEMENT AND
SCHEDULING FOR DEADLINE-DRIVEN CASE

In this section, we study the benefit of deadline awareness
in joint cooperative control. To proceed, we first reformulate the

deadline constraints (4)-(5) such that the heterogeneity of user
deadline tolerance can be fully exploited. The main idea is to pri-
oritize the popular or time-critical services and tasks in intra-cloud
online control. Given any task set Q̂r

n[t], the scheduling ranking
Rr
n[t] =

{
Rrn(1), · · · , Rrn(Q̂rn[t])

}
for EC n is a permutation of

{1, · · · ,Q̂rn[t]}. The priority constraint holds for type-r tasks with
diverse deadline demands if Rr

n[t] satisfies

Rrn(i)

{
< Rrn(j), if di < dj ,

≥Rrn(j), if di ≥ dj ,
(14)

for i ∈ {1, · · · , Q̂rn[t]− 1}, j ∈ {i, · · · , Q̂rn[t]}. Rrn(i) = Rrn(j) if
two tasks share the same deadline demand and are submitted by
one user. The service priority imposed by workload and deadline
urgency drives time-critical placement and scheduling.

5.1 Deadline-Driven Joint Cooperative Placement and
Scheduling Mechanism for Social Cost Minimization

Using Lyapunov techniques [35], we propose a deadline-
driven joint cooperative solution by converting (10) with spatially-
temporally coupled decisions to one-shot minimization problem.
We’re interested in the scenario where the online control among
ECs is coordinated in a centralized way (this subsection) and the
scenario where ECs make strategic decisions (next subsection).

5.1.1 Queue Dynamics

1) Task Queue: Each EC maintains R task queues, each of
which corresponds to one specific type of service. Let the queue
backlogQrn[t] denote the amount of type-r task workloads queued
in EC n’s back-end cluster at the beginning of slot t. Intuitively,
stochastic inter-cloud and intra-cloud controls may bring about the
dynamics of task queue backlog, which can be written as

Qrn[t+ 1] = max

Qrn[t]− xrn[t]− yrn[t] + εr
∑

i∈Ar [t]

αn,i[t], 0

 .

(15)
A queue is stable only if it has a bounded time-averaged backlog

[35], i.e., Q̄rn = lim sup
T→∞

1
T

∑T−1
t=0 E{Qrn[t]} <∞.

2) Virtual Incentive Queue: For incentive constraints, we
introduce a virtual incentive queue Zrn for EC n associated with
service r. The backlog initialized to Zrn[0] = 0 is updated as

Zrn[t+ 1] = max {Zrn[t] + ern[t]− Ern, 0} . (16)

3) Virtual Priority Queue: Under constraint (14), tasks
with urgent deadlines are prioritized in joint cooperative control,
realizing cost reduction and load balancing in temporal domain.
Inspired by [36], we maintain a dynamic priority weight for each
queued task i as ωi[t] = σet−ti−di , ∀ti ≤ t ≤ ti + di. The more
urgent i’s deadline is, the higher priority weight it will get. The
priority weight is initially ωi[ti] = σe−di once being admitted, and
reaches a maximum ωi[ti+di] = σ when it expires in slot ti+di.
The time evolution of priority weight can be captured as

ωi[t+ 1] = ωi[t] · e = ωi[t] + ωi[t] · (e− 1). (17)

We introduce a virtual priority queue Hr
n with backlog Hr

n[t] =∑
i∈Qr

n[t] ωi[t], capturing the overall urgency of queued type-r
tasks. In particular, the backlog initialized to Hr

n[0] = 0 evolves as

Hr
n[t+1] = max

Hr
n[t] + ξrn[t]− x̂rn[t]− ŷrn[t] +

∑
i∈Ar [t]

α̂n,i[t], 0

 ,

(18)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

8

where ξrn[t] =
∑

i∈Qr
n[t]

(e − 1)ωi[t], x̂rn[t] =
∑

i∈xr
n[t]

eωi[t] =∑
i∈Q̂r

n[t]

eωi[t]xn,i[t], ŷrn[t] =
∑

i∈yr
n[t]

eωi[t] =
∑

i∈Q̂r
n[t]

e(εr − xi[t])·

ωi[t]yn,i[t], α̂n,i[t] = eεrωi[t]αn,i[t]. Here xrn[t], yrn[t] are the sets
of processed and dropped tasks associated with xrn[t], yrn[t].

5.1.2 Lyapunov Optimization
We define the perturbed Lyapunov function in terms of Θ[t] =

[Q[t],Z[t],H[t]] as L(Θ[t]) = 1
2
‖Q[t]−θ‖+ 1

2
‖Z[t]‖+ 1

2
‖H[t]‖,

where θ = θrn · 1N×R with θrn being perturbation parameters. To
keep system stable, we introduce one-shot conditional Lyapunov
drift as ∆(Θ[t]) = E{L(Θ[t+ 1])− L(Θ[t])|Θ[t]}, capturing
expected changes in quadratic function of backlogs over each slot.
We incorporate social cost into Lyapunov drift, providing network
stability and cost minimization jointly. The objective of D-JCPS
is to minimize an upper bound of the drift-plus-cost function, i.e.,

min ∆(Θ[t]) + V E{C[t]|Θ[t]}, (19)
where importance weight V > 0 is used to capture how much we
emphasize on cost minimization compared to system stability.

Lemma 3. Denote Q̃rn[t] = Qrn[t]−θrn and H̃r
n[t] = e2Hr

n[t].
Under any feasible online joint cooperative control, we have

∆(Θ[t]) + V E{C[t]|Θ[t]}
≤ B1 +B2[t]−

∑
n,r

E {V χrDr
n[t]arn[t]|Θ[t]}

+
∑
n,r

E

{ ∑
i∈Ar [t]

αn,i[t](Q̃
r
n[t] + H̃r

n[t]ωi[t])|Θ[t]

}

+
∑
n,r

E

{ ∑
i∈Âr

n[t]

αn,i[t](Z
r
n[t] + V λrcn,ni [t])|Θ[t]

}

−
∑
n,r

E

{ ∑
i∈Q̂r

n[t]

xn,i[t](Q̃
r
n[t] + H̃r

n[t]ωi[t])− V crn[t]βrn[t]|Θ[t]

}

−
∑
n,r

E

{ ∑
i∈Q̂r

n[t]

yn,i[t](Q̃
r
n[t] + H̃r

n[t]ωi[t]− V ηr)|Θ[t]

}
,

(20)
where B1 = 1

2

∑
n,r[(1 + e2σ2)(frn + ymax)2 + (1 + e2σ2)(frn)2 +

(Ern)2 + (N − 1)2(Dr,max
n)2 + σ2(e2 − 1)(Qr,max

n)2] is a positive
finite constant, and B2[t] = −

∑
n,r Z

r
n[t]Ern is a known constant

in slot t since the incentive queue backlog values are known at t.

Proof. See Appendix E.

By Lemma 3, minimizing the drift-plus-cost in (19) is equiva-
lent to minimizing the right-hand-side (RHS) of (20). The idea of
D-JCPS is to minimize it subject to constraints (1)-(14), achieving
the tradeoff between queue stability and cost minimization.

5.1.3 Centralized Joint Cooperative Control Policy
A careful investigation of the RHS of (20) reveals that (10) can

be equivalently decoupled into three independent optimization.
1) Inter-Cloud Scheduling: The inter-cloud scheduling con-

trol for different types of services is independent. For each service
r ∈ R, decisions on arn[t] and αn,i[t] can be made by solving

max
∑
n

χrDr
n[t]arn[t]−

∑
i∈Ar [t]

Wn,i[t]αn,i[t]

 (21)

s.t.
∑

i∈Ar [t]

αn,i[t] ≤ frn,∀n ∈N ,

∑
i∈Ar

n[t]

∑
m∈N

αm,i[t] = Dr
n[t]arn[t], ∀n ∈N ,

arn[t], αn,i[t] ∈ {0, 1}, ∀i ∈ Ar[t], n ∈N ,

where Wn,i[t] = 1
V

(Q̃rn[t] + H̃r
n[t]ωi[t] + Zrn[t] + V λrcn,ni [t])

denotes the equivalent offloading cost for offloading task i to EC
n in slot t. This problem seems a little complicated due to the
coupling of arn[t] and αn,i[t]. A feasible approach is backward
induction, i.e., to convert it to a pure offloading problem and on
that basis, to address the admission problem. Given admission
decisions, (21) can be rewritten as the pure offloading problem:

min
∑
n∈N

∑
i∈Ar [t]

Wn,i[t]αn,i[t] (22)

s.t.
∑

i∈Ar [t]

αn,i[t] ≤ frn, ∀n ∈N ,

∑
n∈N

∑
i∈Ar

m[t]

αn,i[t] = Dr
m[t]arm[t], ∀m ∈N ,

αn,i[t] ∈ {0, 1}, ∀i ∈ Ar[t], n ∈N .

Clearly, if arm[t] = 0, Ar
m[t] = ∅; otherwise Ar

m[t] = Dr
m[t]. For

each service, the maximum assignment problem (22) is reducible
to the minimum cost maximum flow (MCMF) problem [31],
where the constraints ensure tasks are properly offloaded. Let
Grt = (Ar[t] ∨ N ∨ {S,D}, E) be the flow network graph for
service r in slot t, where S, D are source and destination nodes.
There are Ar[t] edges connecting S to all task nodes inAr[t]. The
capacity of each edge is set to 1 since every admitted task will be
offloaded to the EC in current slot, which is vital for guaranteed
best-effort service. There are N edges connecting all EC nodes
to D with capacity frnl

. For every task node ik ∈ Ar[t], we add
an edge from it to each EC node n ∈ N since tasks can either
be processed in requesting ECs or offloaded to other ECs. The
capacity and cost of each edge are set to 1 and Wnl,ik [t]. By
finding the minimum cost maximum flow in Grt , all type-r tasks
admitted in slot t are expected to be offloaded to the ECs with
the minimum objective of (22). Therefore, we can leverage the
algorithms like successive shortest path (SSP) to determine the
optimal inter-cloud offloading decisions in polynomial time [37].

The next is to determine optimal admission decisions such that

max
∑
n

χrDr
n[t]arn[t]−

∑
i∈Ar

n[t]

∑
m∈N

Wm,i[t]αm,i[t]

 (23)

s.t. arn[t] ∈ {0, 1}, ∀n ∈N ,

The average weight of decisions on offloading all tasks in
Ar
n[t] is Ŵ r

n [t] = 1
Ar

n[t]

∑
m,iWm,i[t]αm,i[t], denoting the equiv-

alent admission cost involving workload, transmission cost and
deadline urgency. (23) can thus be converted to maximizing∑
n(χrDr

n[t]arn[t]−Ŵ r
n [t]Dr

n[t]arn[t]). It’s a simple linear program-
ming problem and the optimal solution reduces to a threshold-
based admission rule: if Ŵ r

n [t] is no larger than χr, all arrived
tasks will be admitted into the system, and rejected otherwise.

2) Intra-Cloud Placement and Processing: Since intra-cloud
control of different ECs are independent, we can concurrently
obtain decisions on βrn[t], xn,i[t] associated with EC n by solving

min
∑
r

crn[t]βrn[t]− ∑
i∈Q̂r

n[t]

xn,i[t]

V

(
Q̃rn[t] + H̃r

n[t]ωi[t]
) (24)

s.t.
∑
r

βrn[t] ≤ Sn,∑
i∈Q̂r

n[t]

xn,i[t] ≤ min
{
βrn[t]f

r
n, Q̂

r
n[t]
}
,∀r ∈ R,

βrn[t], xn,i[t] ∈ {0, 1},∀i ∈ Q̂rn[t], r ∈ R.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

9

Given the values of βrn[t], xn,i[t] can be determined under their
correlation constraints. If βrn[t] = 0, no type-r task in n gets
processed. If βrn[t] = 1, the first frn tasks in descending order
of ωi[t] will be processed if Q̂rn[t] > frn, otherwise all tasks get
processed. Without loss of generality, we suppose all services are
placed in EC n, and the corresponding processing decisions x̂n,i[t]
can be made. Let V rn [t] =

∑
i∈Q̂r

n[t]
1
V

(Q̃rn[t] + H̃r
n[t]ωi[t])x̂n,i[t],

denoting the value obtained from placement decision βrn[t]. Thus,
(24) can be converted into the following placement problem:

min
∑
r

βrn[t] (crn[t]− V rn [t]) (25)

s.t.
∑
r

βrn[t] ≤ Sn,

βrn[t] ∈ {0, 1}, ∀r ∈ R.

Every EC first locates the optimal service r∗ = argminr(c
r
n[t]−

V rn [t]). There are two cases: (1) If cr
∗

n [t] − V r
∗

n [t] > 0, the
objective function is positive for all services (i.e., large placement
cost, small workload level, not urgent deadline), and it is not
economical to place any service, i.e., βrn[t] = 0,∀r. (2) If
cr
∗

n [t] − V r∗n [t] ≤ 0, service r∗ should be placed since current
deadline urgency goes beyond EC capacity. Set βr

∗

n [t] = 1, S̃n =
Sn. Then find the second optimal service if S̃n = S̃n−1 > 0 and
perform decisions similarly, otherwise end placement process.

3) Intra-Cloud Dropping: Similarly, dropping decisions of
different ECs are independent, and decisions on yn,i[t] for every
EC n ∈N can be concurrently determined by solving

max
∑

i∈Q̂r
n[t]

yn,i[t]

(
1

V

(
Q̃rn[t] + H̃r

n[t]ωi[t]
)
− ηr

)
(26)

s.t.
∑

i∈Q̂r
n[t]

(εr − xi[t])yn,i[t] ≤ ymax,

yn,i[t] ∈ {0, 1}, ∀i ∈ Q̂r
n[t].

The optimal solution to (26) would prefer to make yn,i[t] with
positive weight as large as possible. Following this intuition, each
EC ranks each decision yn,i[t] according to the weights, and then
drops each yn,i[t] as large as possible subject to the constraints.
The remaining variables with negative weight are set to zero.

Remark. Intra-cloud dropping is compatible with processing.
When task queue is idle, tasks with urgent deadlines are given
priority in processing and there is no need to drop. When the queue
is going overflow, try to process tasks and drop tasks approaching
deadlines in view of their little service chances. By leveraging user
deadline tolerance, workloads can be migrated across the slots,
achieving the temporal optimality of system efficiency.

5.1.4 Performance Analysis for D-JCPS
Alg. 3 summarizes the D-JCPS implemented in each slot. For

each EC, the front-end server performs inter-cloud scheduling
(lines 1-8) by applying SSP to solve the pure offloading problem
and on that basis, deciding whether to admit newly arrived tasks
under a threshold-based policy. Meanwhile, the back-end cluster
determines which services to place (line 10) and performs priority-
based intra-cloud scheduling on offloaded tasks (lines 13-21).
Since task dropping would not affect current control decisions,
we integrate the update of Q̂r

n[t] due to the dropped tasks into
the following process of updating Qr

n[t]. After that, update the
dynamics of priority weight and queue backlogs (lines 22-23).

Alg. 3 includes three for loops. The first loop runsR iterations.
In each iteration, apply SSP to obtain feasible offloading control

Algorithm 3: Online Mechanism D-JCPS in slot t
1 for Each service r ∈ R do
2 Apply SSP to obtain decision αn,i[t] for i ∈ Ar[t];
3 for Each EC n ∈N do
4 Derive aggregate offloading weight Ŵ r

n [t] by (23);
5 if χr > Ŵ r

n [t] then
6 arn[t] = 1;
7 else
8 arn[t] = 0; Ar[t]← Ar[t]\Ar

n[t];

9 for Each EC n ∈N do
10 Derive decision βrn[t] by (25);
11 for Each service r ∈ R do
12 Q̂r

n[t] = Qr
n[t] ∨αrn[t];

13 if βrn[t] = 1 then
14 Derive decision xn,i[t] for i ∈ Q̂r

n[t] by (24);
15 for Each task i ∈ Q̂r

n[t] do
16 if xn,i[t] = 1 then
17 xi[t] = xi[t− 1] + 1;
18 else
19 xi[t] = xi[t− 1];

20 Q̂r
n[t]← Q̂r

n[t]\{i} if xi[t] ≥ εr;

21 Derive decision yn,i[t] for i ∈ Q̂r
n[t] by (26);

22 for Each EC n ∈N , service r ∈ R do
23 Update Qrn[t], Zrn[t], ωi[t], Hr

n[t] by (15)-(18).

with running time O(min{v2
1f
∗, v3

1c
∗}), where v1 = 2 +N +Ar[t]

is the total number of vertices on Grt , and f∗, c∗ are the derived
maximum flow and minimum cost. After that, perform admission
and offloading control in O(N2Arn[t]) steps and O(NArn[t]) steps,
where Arn[t] = |Ar

n[t]|. The second loop terminates after N
iterations, in each of which perform placement decisions in O(R)

steps and determine which tasks to process or drop in at most
O(RQ̂rn[t](2+log(Q̂rn[t]))) steps. The third loop for updating takes
O(NR) time. Thus, the overall complexity of Alg. 3 is O(R ·
min{v2

1f
∗, v3

1c
∗}+NR(2+(N+1)Arn[t]+Q̂rn[t](2+log(Q̂rn[t])))).

We next analyze its achieved properties. Before that, we define
the perturbation parameter as θrn

∆
= 2(frn+ymax)+e2σHr,max

n , ∀r, n,
where Hr,max

n is specified later. It can be easily determined since
it only requires the knowledge of maximum number of pro-
cessed/dropped tasks in one slot and maximum coefficient of task
urgency, without any statistical knowledge of system dynamics.

Theorem 3: If the joint cooperative controls are done by Alg. 3
with Qrn[0] = θrn, ∀r, n, D-JCPS achieves the following properties:
a) Let M = V max{ηr, 1

frn
cr,max
n , χmax} + θrn. The backlogs of task

queue Qrn, incentive queue Zrn and priority queue Hr
n satisfy:

Qrn[t] ≤ Qr,max
n

∆
= θrn + V χmax + εrfrn, (27)

Zrn[t] ≤ Zr,max
n

∆
= θrn + V χmax + (N − 1)Dr,max

n − Ern, (28)

Hr
n[t] ≤Hr,max

n
∆
=

M

σe2−dmax + (e− 1)σQr,max
n + eσεrfrn. (29)

b) Let Qmax = maxr,nQr,max
n , Hmax = maxr,nHr,max

n . There is no
task dropping if the maximum task workload εmax = maxr,nεr,
the maximum processing rate fmax = maxr,nfrn and placement
decisions βrn[t] satisfy:

NRQmax (e2σ2
(
e2 − 1

)
Hmax +

(
1 + e4σ2

)
εmaxfmax)

≤
∑
n,r

βrn[t]frn

(
1 + σ2e3−2dmax

)
. (30)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

10

c) Let C∗ be the optimal average social cost for problem (10).
The overall average social cost achieved by D-JCPS satisfies:

lim sup
T→∞

1

t

T−1∑
t=0

E{C[t]} ≤ C∗ +
B1

V
. (31)

Proof. See Appendix F .

5.2 Auction-Based Deadline-Driven Joint Cooperative
Placement and Scheduling Mechanism

The previous subsection considers a cooperative scenario
where individual ECs’ workload and resource cost are known for
social cost minimization. Taking selfishness of ECs into account,
such global optimization cannot attain without the help of an ef-
ficient market that elicits desirable behaviors from individual ECs
[38]. We next design AD-JCPS, an auction-based deadline-driven
cooperative control mechanism, involving inter-cloud trading and
intra-cloud placement/scheduling.

5.2.1 Reverse Auction Model for Inter-Cloud Trading

Inter-cloud trading for different services is performed in par-
allel and we consider it only for a single service in a single slot.
The same analysis can be applied to other services and slots. The
reverse auction model [39] is introduced to capture the interactions
between the MEC provider and ECs, where the former buying
offloading services for arrived tasks is auctioneer and the latter act
as bidders. For convenience, denote Dr[t] = ∪n∈NDr

n[t] as the
set of type-r tasks arrived in slot t ∈ T . Each offloading service
is associated with a cost defined as the increase of one-shot drift-
plus-cost under it. For any locally arrived task i ∈ Dr

n[t], the
cost of EC n ∈ N is cn,i = 1

V

(
Q̃rn[t] + H̃r

n[t]ωi[t]
)

. While for

any task from other ECs i ∈ D̂r
n[t] = ∪m∈N\{n}Dr

m[t], cn,i =
1
V

(
Q̃rn[t] + H̃r

n[t]ωi[t] + Zrn[t] + V λrcn,ni [t]
)

. The provider ini-
tiates a reverse auction by soliciting bids from ECs, where only a
subset of bids are chosen for social welfare maximization.

1) Bidding: For task i ∈ Dr[t], every EC n submits one bid
to the provider, which is specified as a 2-tuple Bn(i) = (frn, bn,i).
Here frn is the maximum number of tasks that n can offload, and
bn,i is the claimed cost for offer offloading service to i, which
may be different from the actual cost cn,i. The set of all bids
is given by B =

{
Bn(i), ∀i ∈Dr[t], n ∈N

}
. On that basis, the

provider determines the allocation and payment rules. Let πn,i be
the binary allocation variable associated with Bn(i), where πn,i =
1 represents EC n’s bid on task i is successful (i.e., i is allocated
to n), and πn,i = 0 otherwise. ECs can win a set of atomic
bids, and the number of winning bids is upper bounded by frn. If
bid Bn(i) wins, the provider pays n a reward p

(
Bn(i),B−n(i)

)
,

where B−n(i) denotes other bids in B except Bn(i). ECs that
are not allocated get no payment. The utility of EC n obtained
from winning bid Bn(i) is the difference between its payment and
actual cost, i.e., un,i = p

(
Bn(i),B−n(i)

)
− cn,i. For the provider,

its trading utility is the difference between the service-specific
value χr and the claimed cost of winner EC, i.e., ui = χr − bn,i.

2) Winner Determination Problem: Winning bids are de-
termined based on an allocation decision, with the objective of
maximizing inter-cloud social welfare defined as the sum of
utilities of all allocated tasks. The winner determination problem
(WDP) is to find an optimal allocation {π∗n,i} that

max
∑
n∈N

∑
i∈Dr [t]

(χr − bn,i)πn,i

s.t.
∑
i∈Dr

t

πn,i ≤ frn, ∀n ∈N ,∑
n∈N

πn,i ≤ 1, ∀i ∈Dr[t],

if ∃j ∈Dr[t],
∑
m

πm,j = 0, then πn,i = 0, ∀i ∈Dr
nj

[t], n ∈N ,

πn,i ∈ {0, 1}, ∀i ∈Dr[t], n ∈N ,
(32)

where the second constraint ensures each task is only allocated
once, and the third constraint suggests the decision feasibility.
Take tasks requesting the same service and EC as a whole. If there
exists a task unallocated, all associated tasks will be unallocated.

Lemma 4. The objective of WDP associated
with service r ∈ R and slot t ∈ T equals∑
n

(
χrDr

n[t]arn[t]−
∑

i∈Ar [t]

Wn,i[t]αn,i[t]

)
when for every

EC n ∈ N , πn,i’s correspond to αn,i[t]’s for i ∈ Dr[t],
and bn,i = 1

V

(
Q̃rn[t] + H̃r

n[t]ωi[t]
)

for i ∈ Dr
n[t], bn,i =

1
V

(
Q̃rn[t] + H̃r

n[t]ωi[t] + Zrn[t] + V λrcn,ni [t]
)

for i ∈ D̂r
n[t].

Proof. See Appendix G.

By Lemma 4, when ECs bid truthfully about service cost,
the optimal allocation decisions, πn,i’s, can be derived from the
optimal solution to inter-cloud scheduling problem (21), αn,i[t]’s,
through the correspondence between them. It’s critical to promote
truthful bidding in inter-cloud trading to guarantee bidding true
cost is a dominant strategy for ECs, thereby preventing gaming
the system and simplifying auction design. We next propose an
auction-based mechanism that enables ECs to bid truthfully.

5.2.2 Design of Auction-Based Mechanism AD-JCPS
1) Inter-Cloud Trading: AD-JCPS uses the auction-based

inter-cloud trading policy to obtain the allocation decisions, which
is summarized in Alg. 4. Similar to inter-cloud control in Alg.
3, it applies SSP to compute the minimum cost maximum flow
(line 1) since WDP is actually a maximum assignment problem,
followed by allocating tasks to ECs under a threshold-based
admission policy (lines 2-6). The major difference lies in that to
address the information disclosure of ECs, a VCG-based payment
is introduced to motivate ECs to bid the costs truthfully (lines 7-9).

Allocation Rule: We solve WDP in the following three steps.
• Transforming to minimum cost maximum flow problem:

We construct the auction-based flow network graph Grt,A =
(Dr

t ∨N ∨ {SA, DA} , EA) for inter-cloud trading associated
with service r and slot t. We connect source node SA to all task
nodes in Dr

t with the capacity and cost of each edge set to 1
and 0. Connect every EC node nl ∈ N to destination node DA,
and the capacity and cost of the edge are frnl

and 0. We add an
edge (ik, nl) ∈ EA between task node ik and EC node nl with
capacity 1 and cost W (ik, nl) = bn,i − χr . The value of SA-
to-DA flow equals the sum of flows across these links, which is
also the objective of (32). The desired flow is determined under the
feasibility constraints in (32) such that tasks are properly allocated.
• Computing minimum cost maximum flow: We also

employ the algorithms like SSP to compute the minimum cost
maximum flow constructed on Grt,A, f∗A, in polynomial time.
• Determining winning bids and task allocation: For each

flow (ik, nl) in f∗A, the connection means that the bid bnl,ik

submitted by EC nl on task ik wins and ik is allocated to nl.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

11

Algorithm 4: Inter-Cloud Trading for Service r in slot t
1 Apply SSP on bid set B to derive allocation πn,i by (32);
2 for Each EC n ∈N do
3 if

∑
i∈Dr

n[t]

∑
m∈N πm,i = Dr

n[t] then
4 π∗m,i = πm,i,∀i ∈Dr

n[t];
5 else
6 π∗m,i = 0, ∀i ∈Dr

n[t];

7 for Each EC n ∈N do
8 if ∃i ∈Dr[t] such that π∗n,i = 1 then
9 Derive payment p(Bn(i),B−n(i)) by (33);

Payment Rule: As the most well-studied auction format,
Vickrey-Clarke-Groves (VCG) mechanism possesses the desirable
truthfulness property while yielding the socially optimal allocation
[39], [40]. Since winning bids are determined based on ECs’
claimed costs, VCG-based payment rule is designed to encourage
ECs to truthfully report the cost. Here the payment to each winner
EC equals its marginal contribution to the social welfare of other
bids. The payment for winner EC n associated with task i is

p
(
Bn(i),B−n(i)

)
= S∗ (B)− (−bn,i)− S∗

(
B−n(i)

)
, (33)

where S∗(B) is the maximum inter-cloud social welfare under
B. Such payment can be interpreted by amortizing total social
welfare to each associated element in the trading, where task i
has a welfare χr and the welfare of EC n that i is allocated is
−bn,i. The first two terms in (33) are the social welfare of all
other elements except that of n when Bn(i) wins, whose value
depends on B−n(i) and is irrelevant to Bn(i). The last term is the
social welfare of all other elements when excluding Bn(i).

2) Intra-Cloud Placement and Scheduling: Once being
allocated to EC n, task i ∈ Dr[t] will enter into the queue Qrn
waiting for processing. The detailed process is omitted since it
can be directly adapted from that of Alg. 3.

5.2.3 Performance Analysis for AD-JCPS
The following results assert the truthfulness, optimality and

delay performance of AD-JCPS.
Theorem 4: AD-JCPS is truthful, i.e., each EC reports service

cost truthfully in inter-cloud trading no matter what others report.

Proof. See Appendix H .

Theorem 5: AD-JCPS achieves the same queueing delay
bound and asymptotically optimal social cost as D-JCPS.

Proof. See Appendix I .

6 SIMULATION

We envision an edge cloud federation system deployed in a
commercial complex, where tenants deploy ECs to collaboratively
serve employees. We simulate a 200m × 200m commercial
complex with N = 10 ECs distributed by a homogeneous
Poisson Point Process with density of 10−3, which is commonly
used in previous studies [11]. The system is to provide R = 8
different types of services, each of which has input data size
λr ∈ [0.1, 0.5]Mb and consumes εr ∈ [1, 3] time slots to
complete. The income of admitting each type-r task χr follows
a uniform distribution within [5, 10]. For each EC, the storage
capacity Sn, maximum service rate frn and sharing budget Ern are
uniformly distributed in [1, 5], [30, 35] and [10, 15]. To capture

scale economy effect on infrastructure [4], we determine a basic
placement cost crn reversely proportional to the maximum service
rate. The unit placement cost follows a Gaussian distribution with
mean crn and standard deviation crn/2. The unit offloading cost
between any two ECs is measured by the geographical distance.
Users are randomly assigned to one of the nearby ECs. The
number of arrived tasks in each slot satisfies a Poisson distribution
with arrival rate uniformly distributed in [100, 300]. The user
deadline di follows a uniform distribution within [1, 4].

We implement the proposed mechanisms for T = 300 slots
and compare them with three baselines: (1) Non-Cooperative
Scheduling (NCS): It is an enhanced version of the method from
[21], where the cooperative offloading is not allowed and the
workloads exceeding ECs’ local capacity are dropped; (2) Non-
Cooperative Placement (NCP): It is inspired by the benchmark
considered in [17], where ECs place services in descending order
of the demands until reaching Sn regardless of what others do; (3)
Single-Slot Constraint (SSC): We apply the method from [10],
where each EC poses a hard incentive constraint on helping peers
offload type-r tasks in each slot to satisfy long-term incentive
constraints, thus making no sharing budget violation of SSC across
all slots. Since the above are derived from the schemes without
user deadline tolerance, we extend them by simply releasing the
time constraint on problem formulation for fair comparisons.

6.1 Results for Deadline-Oblivious Case
Impact of Number of ECs. Fig. 2 illustrates the average

social cost with respect to the number of ECs. We observe that
without cooperative offloading, NCS bears a high social cost since
ECs can be easily overloaded under heterogeneous task arrival
pattern, resulting in high dropping cost. Given user demands, how
N changes has no effect on the overall service capacity and
the performance of NCS stays roughly the same. By contrast,
the other three mechanisms with cooperative offloading enabled
achieve much lower social cost, and the performance improves
as N increases. DO-JCPS is superior to NCP where ECs place
services only based on individual service popularity. This is
because by optimizing the cooperative placement and scheduling
jointly, DO-JCPS can make full use of available resources and
serve more tasks of different types. Moreover, DO-JCPS leverages
the heterogeneity of temporal task arrival pattern, realizing more
balanced workload and high cost reduction across the slots. As
for SSC, the hard incentive constraints are enforced in each slot,
making scheduling less flexible and thus yielding large cost.

Impact of Service Types. To capture the impact of number
of service types, Fig. 3 shows the average social cost with respect
to R. Compared to NCS and NCP, the joint cooperative mecha-
nisms (SSC, DO-JCPS) achieve lower social cost, since they can
efficiently utilize the available storage capacity by exploiting di-
versities in workload and resource cost among ECs. Interestingly,
as R increases, the gap between them increases first slowly and
then sharply. This is because when R is small, ECs mostly have
sufficient storage capacity; as R increases, the impact of storage
capacity limitation becomes more prominent. By leveraging joint
cooperative placement and scheduling, such impact can be greatly
mitigated for DO-JCPS. Moreover, SSC incurs a slightly higher
cost than DO-JCPS due to neglect of correlations across the slots.

Spatial Load Balancing. To validate efficiency of DO-JCPS
in spatial load balancing, we perform simulations on four adjacent
ECs for one specific service in one specific slot. Fig. 4 depicts the
distribution of initial workload and scheduled workload. Instead

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

12

5 6 7 8 9 10
Number of ECs N

350

400

450

500

550

600

650

Av
er

ag
e S

oc
ial

 C
os

t
DO-JCPS
SSC
NCS
NCP

Fig. 2. Average social cost vs. N .

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Number of Service Types R

500

600

700

800

900

1000

1100

1200

Av
er

ag
e S

oc
ial

 C
os

t

DO-JCPS
SSC
NCS
NCP

Fig. 3. Average social cost vs. R. Fig. 4. Spatial load balancing. Fig. 5. Social cost vs. T .

Fig. 6. Queue backlogs vs. T .

0 50 100 150 200 250 300
Time Slot T

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Us
er

Sa
tis

fac
tio

n

D-JCPS
AD-JCPS
SSC
NCS
NCP

Fig. 7. Satisfaction ratio vs. T .

0 20 40 60 80
Task Completion Delay

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

D-JCPS
AD-JCPS
SSC
NCS
NCP

Fig. 8. CDF of completion delay. Fig. 9. Initial workload.

Fig. 10. Scheduled workload. Fig. 11. Sensitivity to deadline er-
rors.

Fig. 12. Average social cost vs. V . Fig. 13. Average backlogs vs. V .

TABLE 3
Average running time for deadline-oblivious mechanisms

Algorithms Average Running Time
NCS 15.16 sec
NCP 145.31 sec
SSC 156.56 sec

DO-JCPS 162.89 sec

of simply distributing the workload evenly across ECs, DO-JCPS
is designed to balance the workloads by exploiting diversities in
workload and resource cost among ECs. We observe that low-cost
and heavily-loaded ECs (e.g., EC 3) tend to place the service and
offload tasks from high-cost and lightly-loaded ECs (e.g., EC 1),
avoiding placing high-cost service just to serve less workload.

Computation Efficiency. Table 3 shows the deadline-
oblivious mechanisms share different running time. Due to NP-
hardness of the joint cooperative control problem, NCS and NCP
that separately optimize service placement or scheduling, are faster
than other solutions that consider two problems jointly. Especially
for NCS, no need to interact with neighboring ECs makes it
run faster. Compared to SSC, DO-JCPS is inferior because under
sharing budget constraint, there exist more complex optimizations
across the slots in scheduling. Taking Fig. 2 and Fig. 3 together,
DO-JCPS needs longer time but for significant cost reduction.

6.2 Results for Deadline-Driven Case

Run-Time Performance. Fig. 5 and Fig. 6 show the long-
term performance comparison of the deadline-driven mechanisms
in terms of social cost and stability, respectively. Without cooper-
ative offloading, NCS is expected to bear the highest social cost
and largest queue backlog. As for NCP, the interplay between
placement and scheduling is ignored, making adjacent ECs more
likely to place the same services. This practice may lead to the
waste of service capacity and incur high system cost. By contrast,
the joint cooperative mechanisms (SSC, D-JCPS, AD-JCPS) allow
ECs to place time-critical services at low cost and make the most
of provisioned resources. We observe that the latter two that jointly
optimize task scheduling across the slots are superior to SSC. This

is because by posing hard sharing budget constraint in each slot,
slot-by-slot optimization does not handle well the heterogeneity of
temporal task arrival pattern. Moreover, AD-JCPS achieves similar
performance to D-JCPS, and the slightly higher social cost and
larger backlog are due to strategic behaviors of self-interested ECs.

Task Completion Performance. We mainly focus on two
metrics: user satisfaction and task completion delay. User satis-
faction measured by the ratio of tasks being completed before the
deadlines is shown in Fig. 7. As expected, NCS achieves the lowest
satisfaction since without cooperative scheduling, it is difficult for
resource-limited ECs to fulfill all tasks alone. By exhausting avail-
able capacity to serve users, NCP is superior to NCS. While for
SSC, the design inefficiency exists due to the sub-optimality under
slot-by-slot optimization. By exploiting correlation across slots,
the proposed solutions make cooperative offloading more flexible,
realizing more balanced workloads in temporal domain. Fig. 8
shows the cumulative distribution function (CDF) of completion
delay. The average completion delay is 3 for D-JCPS, AD-JCPS,
SSC, and 6 for NCP, NCS. There is a 2-fold gap between the
latter two that optimize placement and scheduling separately, and
the former three that jointly consider two problems, suggesting the
importance of joint cooperative control.

Spatial and Temporal Load Balancing. We validate effec-
tiveness of the proposed D-JCPS in load balancing, taking EC 1,
EC 2 and EC 3 for one specific service as an example. As shown in
Fig. 9, the initial workload patterns change rapidly over time, and
even within the same slot, such patterns of different ECs vary a lot.
Fig. 10 illustrates the aggregate scheduled workload performance
of D-JCPS. Here the aggregation involves load balancing in spatial
and temporal domains, which are realized by leveraging edge
cloud federation and user deadline preference. Combining these
two figures, both spatial and temporal workload fluctuation can be
mitigated under deadline-driven cooperative control. For example,
the time-average variance of EC 1 is decreased by 77.48%.

Sensitivity to Errors in User Deadline Demands. The
proposed deadline-driven mechanisms in Section 4 need to know
the deadline information of user requests, which more or less has

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

13

TABLE 4
Average running time for deadline-driven mechanisms

Algorithms Average Running Time
NCS 14.18 sec
NCP 121.79 sec
SSC 128.85 sec

D-JCPS 134.92 sec
AD-JCPS 144.06 sec

some errors in practice. We examine the sensitivity of our solutions
with respect to errors in user deadline demands. For each arriving
task, we particularly add a random error to the deadline length it
contains, and then conduct D-JCPS on such error dataset. Using
the results on datasets without errors as the baseline, we present
the difference in average social cost increase due to the injected
errors in user deadlines with varying error bounds (from ±10% of
error to ±50% of error, uniformly distributed). As shown in Fig.
11, user deadline errors result in changes in average social cost,
but only within the range of −11% to 8%. Therefore, it can be
concluded that D-JCPS is robust to errors in user deadlines.

Impact of Importance Weight. Fig. 12 and Fig. 13 illustrate
the impact of V on system performance. As expected, the two
proposed deadline-driven joint cooperative mechanisms (D-JCPS,
AD-JCPS) are superior to others (NCS, NCP, SSC). Note that
larger V means emphasizing more on social cost and being less
concerned with Lyapunov drift represented by queue backlogs. As
V grows to the infinity, all mechanisms achieve optimal social
cost and AD-JCPS achieves almost the same low social cost as
D-JCPS. Combining these two figures, we observe that as V
increases, a lower social cost is achieved but at the cost of larger
Lyapunov drift, indicating there exists a [O(1/V), O(V)] trade-
off between average social cost and queue backlogs, which is
consistent with our theoretical analysis in Theorem 3.

Computation Efficiency. Table 4 shows the performance
comparison in running time. Similar to Table 3, NCS without
inter-cloud offloading is the fastest, followed by NCP, SSC, the
proposed solutions. Nevertheless, each deadline-driven mecha-
nism incurs a lower overhead than that in deadline-oblivious case
because the queued-based online control is performed to pursue
asymptotically optimal solution, not the optimal one. Compared to
D-JCPS, AD-JCPS needs longer time since a VCG-based payment
policy is applied to elicit truthful bidding from ECs.

7 CONCLUSION

We study the problem of online joint cooperative placement
and scheduling among federated ECs, taking both user deadline
preference and ECs’ strategic behavior into account. By leveraging
user deadline tolerance, we harness the Lyapunov technique to
exploit spatial-temporal optimality of the joint cooperative control
in terms of cost reduction and load balancing for cases without
and with offloading trading. Theoretical analysis and performance
evaluation validate the efficiency of our mechanisms.

REFERENCES

[1] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research
Opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854-
864, Dec. 2016.

[2] T. Ouyang, Z. Zhou, and X. Chen, “Follow Me at the Edge: Mobility-
Aware Dynamic Service Placement for Mobile Edge Computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333-
2345, Oct. 2018.

[3] Y. Lin and H. Shen, “CloudFog: Leveraging Fog to Extend Cloud Gaming
for Thin-Client MMOG with High Quality of Service,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 2, pp. 431-445, Feb. 2017.

[4] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online Resource Allocation
for Arbitrary User Mobility in Distributed Edge Clouds,” in Proc. of IEEE
ICDCS, Jun. 2017.

[5] Y. Yu, X. Bu, K. Yang, Z. Wu, and Z. Han, “Green Large-Scale Fog
Computing Resource Allocation Using Joint Benders Decomposition,
Dinkelbach Algorithm, ADMM, and Branch-and-Bound,” IEEE Internet
of Things Journal, vol. 6, no. 3, pp. 4106-4117, Jun. 2019.

[6] X. Lyu, C. Ren, W. Ni, H. Tian, and R. P. Liu, “Distributed Optimization
of Collaborative Regions in Large-Scale Inhomogeneous Fog Computing,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 3, pp.
574-586, Mar. 2018.

[7] L. Tong, Y. Li, and W. Gao, “A Hierarchical Edge Cloud Architecture for
Mobile Computing,” in Proc. of IEEE INFOCOM, Apr. 2016.

[8] Y. Xiao and M. Krunz, “QoE and Power Efficiency Tradeoff for Fog
Computing Networks with Fog Node Cooperation,” in Proc. of IEEE
INFOCOM, Apr. 2017.

[9] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
Mobile Edge Computing in 5G Networks: New Paradigms, Scenarios, and
Challenges,” IEEE Communications Magazine, vol. 55, no. 4, pp. 54-61,
Apr. 2017.

[10] T. He, H. Khamfroush, S. Wang, T. L. Porta, and S. Stein, “It’s Hard to
Share: Joint Service Placement and Request Scheduling in Edge Clouds
with Sharable and Non-Sharable Resources,” in Proc. of IEEE ICDCS,
Jul. 2018.

[11] L. Chen, S. Zhou, and J. Xu, “Computation Peer Offloading for
Energy-Constrained Mobile Edge Computing in Small-Cell Networks,”
IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1619-1632,
Aug. 2018.

[12] L. Chen and J. Xu, “Socially Trusted Collaborative Edge Computing in
Ultra Dense Networks,” in Proc. of ACM SEC, Oct. 2017.

[13] L. Chen, Jie Xu, S. Ren, and P. Zhou, “Spatio-Temporal Edge Service
Placement: A Bandit Learning Approach,” IEEE Transactions on Comput-
ers, vol. 17, no. 12, pp. 8388-8401, Dec. 2018.

[14] S. Pasteris, S. Wang, M. Herbster, T. He, “Service Placement with
Provable Guarantees in Heterogeneous Edge Computing Systems,” in
Proc. of IEEE INFOCOM, Apr. 2019.

[15] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic Service Placement for Mobile Micro-Clouds with Predicted
Future Costs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, pp. 1002-1016, Apr. 2017.

[16] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint Optimization of Task
Scheduling and Image Placement in Fog Computing Supported Software-
Defined Embedded System,” IEEE Transactions on Computers, vol. 65,
no. 12, pp. 3702-3712, Dec. 2016.

[17] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang, K.
S Chan, “Service Placement and Request Scheduling for Data-intensive
Applications in Edge Clouds,” in Proc. of IEEE INFOCOM, Apr. 2019.

[18] K. Katsalis, T. G. Papaioannou, N. Nikaein, and L. Tassiulas, “SLA-
Driven VM Scheduling in Mobile Edge Computing,” in Proc. of IEEE
CLOUD, Jun. 2016.

[19] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D Fogging: An Energy-Efficient
and Incentive-Aware Task Offloading Framework via Network-Assisted
D2D Collaboration,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 3887-3901, Dec. 2016.

[20] N. Carlsson and D. Eager, “Ephemeral Content Popularity at the Edge
and Implications for On-Demand Caching,” IEEE Transactions on Parallel
and Distributed Systems, vol. 28, no. 6, pp. 1621-1634, Jun. 2017.

[21] J. Xu, L. Chen, and P. Zhou, “Joint Service Caching and Task Offloading
for Mobile Edge Computing in Dense Networks,” in Proc. of IEEE
INFOCOM, Apr. 2018.

[22] S. Shukla, O. Bhardwaj, A. A. Abouzeid, T. Salonidis, and T. He, “Proac-
tive Retention-Aware Caching With Multi-Path Routing for Wireless Edge
Networks,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 6, pp. 1286-1299, Jun. 2018.

[23] A. -C. Pang, W. -H. Chung, T. -C. Chiu, and J. Zhang, “Latency-Driven
Cooperative Task Computing in Multi-User Fog-Radio Access Networks,”
in Proc. of IEEE ICDCS, Jun. 2017.

[24] T. Li, C. S. Magurawalage, K. Wang, K. Xu, K. Yang, and H. Wang, “On
Efficient Offloading Control in Cloud Radio Access Network with Mobile
Edge Computing,” in Proc. of IEEE ICDCS, Jun. 2017.

[25] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-Aware Datacen-
ter TCP (D2TCP),” in Proc. of ACM SIGCOMM, Aug. 2012.

[26] Z. Zheng and N. B. Shroff, “Online Multi-Resource Allocation for
Deadline Sensitive Jobs with Partial Values in the Cloud,” in Proc. of
IEEE INFOCOM, Apr. 2016.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3061602, IEEE
Transactions on Mobile Computing

14

[27] J. Zhao, H. Li, C. Wu, Z. Li, Z. Zhang, F. C.M. Lau, “Dynamic Pricing
and Profit Maximization for the Cloud with Geo-distributed Data Centers,”
in Proc. of IEEE INFOCOM, Apr. 2014.

[28] R. Zhou, Z. Li, C. Wu, and Z. Huang, “An Efficient Cloud Market Mech-
anism for Computing Jobs With Soft Deadlines,” IEEE/ACM Transactions
on Networking, vol. 25, no. 2, pp. 793-805, Apr. 2017.

[29] Y. Yao, L. Huang, A. B. Sharma, L. Golubchik, and M. J. Neely,
“Power Cost Reduction in Distributed Data Centers: A Two-Time-Scale
Approach for Delay Tolerant Workloads,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 1, pp. 200-211, Jan. 2014.

[30] L. Wu, X. Zhang, and J. Zhang, “Capacitated Facility Location Problem
with General Setup Cost,” Computers & Operations Research, vol. 33, no.
5, pp. 1226-1241, May 2006.

[31] X. Wang, R. Jia, X. Tian, and X. Gan, “Dynamic Task Assignment in
Crowdsensing with Location Awareness and Location Diversity,” in Proc.
of IEEE INFOCOM, Apr. 2018.

[32] M. Mahdian, Y. Ye, and J. Zhang, “Improved Approximation Algorithms
for Metric Facility Location Problems,” in Proc. of International Workshop
on Approximation Algorithms for Combinatorial Optimization, Oct. 2002.

[33] P. Li, S. Guo, and J. Hu, “Energy-Efficient Cooperative Communications
for Multimedia Applications in Multi-Channel Wireless Networks,” IEEE
Transactions on Computers, vol. 64, no. 6, pp. 1670-1679, Jun. 2015.

[34] M. H. Hajiesmaili, L. Deng, M. Chen, and Z. Li, “Incentivizing Device-
to-Device Load Balancing for Cellular Networks: An Online Auction
Design,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 2, pp. 265-279, Feb. 2017.

[35] M. J. Neely, “Stochastic Network Optimization with Application to
Communication and Queueing Systems,” Morgan & Claypool, 2010.

[36] Y. Zhao, C. -C. Liao, T. -Y. Lin, J. Yin, N. Do, C. -H. Hsu, and N.
Venkatasubramanian, “SmartSource: A Mobile Q&A Middleware Pow-
ered by Crowdsourcing,” in Proc. of IEEE MDM, May 2015.

[37] Y. Rochman, H. Levy, and E. Brosh, “Resource Placement and Assign-
ment in Distributed Network Topologies,” in Proc. of IEEE INFOCOM,
Apr. 2013.

[38] J. Zhao, C. Wu, and Z. Li, “Cost Minimization in Multiple IaaS Clouds:
A Double Auction Approach,” CoRR, vol. abs/1308.0841, Aug. 2013.

[39] Z. Feng, Y. Zhu, Q. Zhang, H. Zhu, J. Yu, J. Cao, and L. M. Ni,
“Towards Truthful Mechanisms for Mobile Crowdsourcing with Dynamic
Smartphones,” in Proc. of IEEE ICDCS, Jun. 2014.

[40] L. Gao, F. Hou, J. Huang, “Providing Long-Term Participation Incentive
in Participatory Sensing,” in Proc. of IEEE INFOCOM, Apr. 2015.

[41] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic Models of Load
Balancing and Scheduling in Cloud Computing Clusters,” in Proc. of IEEE
INFOCOM, Apr. 2013.

Yuqing Li received the B.S. degree in Com-
munication Engineering from Xidian University,
Xi’an, China, in 2014, and is currently pursu-
ing the Ph.D. degree in Electronic Engineer-
ing at Shanghai Jiao Tong University, Shanghai,
China. Her current research interests include
edge/mobile computing, social aware networks,
privacy/security and network economics.

Wenkuan Dai received the B.S. degree in Com-
munication Engineering from Xidian University,
Xi’an, China, in 2016. He is pursuing the M.S.
degree from the Department of Electronic En-
gineering, Shanghai Jiao Tong University. His
research interests include charging station plan-
ning, and electric vehicles grid integration.

Xiaoying Gan received her Ph. D degrees in
Electronic Engineering from Shanghai Jiao Tong
University, Shanghai, China in 2006. She is cur-
rently with Institute of Wireless Communication
Technology, at Department of Electronic Engi-
neering, Shanghai Jiao Tong University, where
she is an Associate Professor. Her current re-
search interests include Heterogenous Cellular
Network, Cognitive Network, Multi-user Multi-
channel Access and Dynamic Radio Resource
Management.

Haiming Jin received the B.S. degree from
Shanghai Jiao Tong University, Shanghai, China,
in 2012, and the Ph.D. degree from the Univer-
sity of Illinois at UrbanaChampaign (UIUC), Ur-
bana, IL, USA, in 2017. He is currently a tenure-
track Assistant Professor at the John Hopcroft
Center for Computer Science and the Depart-
ment of Electronic Engineering, Shanghai Jiao
Tong University. Before this, he was a Post-
Doctoral Research Associate with the Coordi-
nated Science Laboratory, UIUC. His research of

interests are in the area of urban computing, crowd and social sensing
systems, network economics and game theory, reinforcement learning.

Luoyi Fu received her B. E. degree in Electronic
Engineering from Shanghai Jiao Tong University,
China, in 2009 and Ph.D. degree in Computer
Science and Engineering in the same university
in 2015. She is currently an Assistant Professor
in Department of Computer Science and Engi-
neering in Shanghai Jiao Tong University. Her
research of interests are in the area of social
networking and big data, scaling laws analysis
in wireless networks and random graphs.

Huadong Ma received his Ph.D. degree in com-
puter science from the Institute of Computing
Technology, Chinese Academy of Sciences, Bei-
jing, China, in 1995. He is currently a Chang
Jiang Scholar Professor with the Beijing Uni-
versity of Posts and Telecommunications, Bei-
jing, where he is also the Director of the Beijing
Key Laboratory of Intelligent Telecommunica-
tions Software and Multimedia and the Executive
Dean of the School of Computer Science. His re-
search interests include multimedia system and

networking, sensor networks, and Internet of Things.

Xinbing Wang (SM’12) received the B.S. degree
(with hons.) in automation from Shanghai Jiao
Tong University, Shanghai, China, in 1998, the
M.S. degree in computer science and technol-
ogy from Tsinghua University, Beijing, China, in
2001, and the Ph.D. degree with a major in elec-
trical and computer engineering and minor in
mathematics from North Carolina State Univer-
sity, Raleigh, in 2006. Currently, he is a professor
with the Department of Electronic Engineering,
Shanghai Jiao Tong University. His research in-

terests include resource allocation in mobile and wireless networks, and
congestion control over wireless ad hoc and sensor networks.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 26,2021 at 04:20:07 UTC from IEEE Xplore. Restrictions apply.

