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ACE-pFL: Accurate, Efficient Personalized
Federated Learning With Knowledge Distillation
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Abstract— Personalized Federated Learning (pFL) can col-
laboratively personalize models for multiple clients without
sharing their private data. However, many pFL methods rely
on server-side model parameters aggregation, which requires
all models to have the same structure and size. One promising
approach is leveraging knowledge distillation (KD) to transfer
knowledge between models by exchanging soft predictions rather
than model parameters, thus training heterogeneous models. Nev-
ertheless, existing KD-based pFL solutions suffer from accuracy
loss due to inadequate knowledge extraction as well as huge com-
puting and communication overheads. In this paper, we present
an accurate and efficient KD-based pFL framework, called
ACE-pFL. Specifically, we first propose a privacy-preserving
client clustering to reduce the impact of non-independent and
identically distributed (non-IID) data on model accuracy and
convergence, grouping clients with similar data distributions into
the same cluster. Since the distillation temperature of traditional
KD is fixed, which does not consider the dynamic model training
process, we design a dynamic distillation temperature adjustment
to accommodate this process, where clients incrementally increase
the distillation temperature as training proceeds to facilitate
model generalization to new data. Finally, we employ the triple
distillation strategy to provide diverse and abundant knowledge,
including explicit global knowledge, implicit local knowledge,
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and implicit global knowledge. Experiments on multiple datasets
and tasks show that compared with existing schemes, ACE-pFL
can significantly improve the test accuracy by 17.18%, reduce
the training time by 57% and the communication overhead by
59.12× on average.

Index Terms— Personalized federated learning, knowledge
distillation, non-IID data.

I. INTRODUCTION

FEDERATED Learning (FL) is currently one of the most
promising distributed learning frameworks, which allows

multiple clients to collaboratively train a global model with the
coordination of a central server. The primary goal is to provide
privacy protection for clients’ local data and address the “data
islands” problem. Its applications engage industries including
finance [1], [2], healthcare [3], [4], and manufacturing [5], [6].

Nevertheless, a single global model trained from all clients
may not satisfy those whose tasks or data distributions signifi-
cantly deviate from the rest [7], [8]. Consequently, employing
personalized models seems to be an effective solution in FL,
namely, personalized federated learning (pFL). However, most
recent works regarding pFL [9], [10], [11], [12] inevitably
have to be identical in model structure and size to aggregate
parameters from all clients. In practical scenarios, clients
often prefer to employ customized model architectures (i.e.,
different structures and sizes) to accommodate heterogeneity
in computation, communication, and storage capabilities, etc.

One promising approach is leveraging knowledge dis-
tillation (KD) to transfer knowledge by exchanging soft
predictions instead of using model parameters. Therefore,
KD-based pFL methods [13], [14], [15], [16] have been inves-
tigated for collaborative training of heterogeneous models.
Unfortunately, KD-based pFL faces three main challenges: (1)
due to the distributed nature of the collection, data across
various clients is typically non-independent and identically
distributed (non-IID), which leads to low accuracy and exces-
sive training overhead (i.e., training time and communication
overhead) [17], [18], [19]; (2) the distillation temperature of
traditional KD is fixed, which does not consider the dynamic
model training process [20], [21], [22]; (3) simple KD has
a single source of knowledge, which may ignore knowledge
from other sources, resulting in poor model performance [14],
[15], [21].

In this paper, we present an accurate and efficient KD-based
pFL framework to address these issues, called ACE-pFL.
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First, there may exist many clients that have similar data
distributions. If these clients can be aggregated, they can
mutually benefit from expanding more valuable data, which
can be used for personalized models, thereby alleviating the
non-IID issue. Therefore, we design an Earth Mover’s Distance
(EMD)-based client clustering, which groups clients with
similar data distributions into the same cluster to mitigate the
adverse effects of non-IID. Specifically, we randomly select
a client, and the remaining clients individually measure the
dissimilarity of their data distributions with it, after which they
are grouped using the K-means algorithm [23].

Second, the distillation temperature in KD affects soft pre-
diction distributions, which in turn influences the effectiveness
of knowledge transfer. If the temperature can be dynamically
adjusted, the performance of knowledge transfer will be further
improved. The model may require diverse information at
different stages of training [21]. For example, in the early
stages, a lower temperature should be used to allow the model
to focus on the most critical knowledge to accelerate model
convergence. As it gradually converges, a higher temperature
allows the model to consider more classes, which can help the
model generalize better to new data. Therefore, we propose
dynamic distillation temperature adjustment, in which clients
only need to continuously increase the distillation temperature
to accommodate pFL as the training rounds increases.

Third, limited sources of knowledge result in poor model
performance and generalization ability, making it challenging
to handle complex learning tasks. If we can provide diverse
and abundant knowledge, it can further improve distilla-
tion efficiency. Therefore, we design the triple distillation
strategy, which enables local personalized models to learn
explicit and implicit knowledge. Concretely, we distill certain
explicit global knowledge from the current aggregated soft
predictions and distill the other two parts of implicit knowl-
edge from the past soft predictions of the local model (i.e.,
implicit local knowledge) and the past aggregated soft predic-
tions (i.e., implicit global knowledge), thus providing explicit
and implicit knowledge for pFL. Therefore, ACE-pFL can
improve the model performance by providing rich multi-source
knowledge.

To demonstrate the generality of our framework, we utilize
five benchmark datasets (e.g., CIFAR-100) covering three
modalities (i.e., image, text, and audio) on multiple model
architectures including ResNet50, etc. We also compare our
framework with other personalized FL schemes in terms of
testing accuracy, training time, and communication overhead.
The results highlight the advantage of ACE-pFL in term of
high accuracy and low overhead, confirming its potential for
practical deployment in real-world scenarios.

To summarize, our main contributions are as follows:
• We propose an accurate and efficient KD-based pFL

framework, ACE-pFL, which improves model accuracy,
accelerates model training, and reduces communication
overhead. This provides a possible solution for KD-based
pFL deployment in practical scenarios.

• We mitigate the adverse effects of non-IID data by
designing an EMD-based client clustering. Then, we also
propose dynamic distillation temperature adjustment

to accommodate the dynamic pFL process. Finally,
we employ the triple distillation strategy to provide rich
multi-source knowledge.

• We evaluate the performance of ACE-pFL through exten-
sive experiments. The results show that ACE-pFL can
achieve the model accuracy improvement of around
2.97%–56.93%, reduce the training time by 7.78× at
most, and reduces the communication overhead 184× at
most compared with the baselines under non-IID settings.

II. PRELIMINARIES

We first briefly describe pFL. After that, we introduce
KD-based pFL.

A. Personalized Federated Learning

pFL customizes individual models for each client collabo-
ratively to accommodate the specific needs of each client [9],
[10], [15], [16]. In each training round, each client trains a
local model using its training data, and uploads the intermedi-
ate result (e.g., model parameters) to the server; the server
aggregates the clients’ intermediate results, and sends the
aggregated result to the clients; each client achieves personal-
ization by updating the local model with specific requirements.

Assume that there are N clients and a remote server. Each
client n can only access to its private dataset Dn ≜ {xi, yi},
where xi is the i-th data sample, and yi ∈ {1, 2, · · · , C} is
the label of xi. Denote the number of data samples in dataset
Dn as Dn. The global dataset D = {D1,D2, · · · ,DN} is
formed by concatenating local datasets, and D =

∑N
n=1 Dn

is the number of data samples in dataset D. Additionally,
we need to introduce a public dataset D0 to evaluate the
generalization ability of each client’s personalized model.
The public dataset can be shared and used by all clients.
In contrast to the private dataset, the public dataset is made
publicly available with the consent of their contributors (e.g.,
volunteers), which is often collected to facilitate research,
validate algorithms, or solve specific problems. Our goal is
to minimize the arg minL(w) :=

∑N
n=1

Dn

D Lptrain,n(wn),
where Lptrain,n(wn) is the personalized loss function of client
n, and w = [w1, w2, · · · , wN ] is the connection of all weights.
However, such model parameters sharing can certainly be a
straightforward way of information exchange, it leads to a
huge communication overhead.

B. KD-Based pFL

KD, as a knowledge transfer method, has been widely
applied to pFL, where only soft predictions are exchanged,
avoiding the need to share model parameters. KD allows
multiple clients to absorb the inferred knowledge from others
by comparing outputs on a public dataset [24], [25]. Specif-
ically, the local client’s personalized model learns from a
global perspective by simulating the aggregated soft predic-
tions distribution as the model output via Kullback-Leibler
(KL) divergence loss, which is defined as follows.

LKD(sr
n(x), sr) = T 2KL(sr

n(x)||sr), (1)
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Fig. 1. An overview of ACE-pFL. Based on the data distribution of the
clients, they are grouped into different clusters (➀). Within each cluster, clients
perform local training using their private dataset and test on a public dataset
to obtain local soft predictions (➁). The server receives local soft predictions
from each cluster, aggregates them to generate the global soft predictions,
and sends the aggregated results back to the clients (➂). Clients then update
locally based on the aggregated results and proceed to the next round of local
training (➃).

where T is the temperature parameter, used to control the
softening degree of outputs. x denotes some data samples
from a public dataset D0. sr

n(x) captures soft predictions
of the client n, calculated with the softmax of logits
zn, i.e., sr

n(x) = [ exp(zn
1 /T )∑C

c=1 exp(zn
c /T )

, · · · , exp(zn
C/T )∑C

c=1 exp(zn
c /T )

],
where C is the number of classes. sr =
[ 1
N

∑N
n=1

exp(zn
1 /T )∑C

c=1 exp(zn
c /T )

, · · · , 1
N

∑N
n=1

exp(zn
C/T )∑C

c=1 exp(zn
c /T )

]
is the aggregated result in the r-th round. Finally, client
n updates the local model according to Eq. (1) and
Lptrain,n(wn).

III. ACE-PFL DESIGN

We present the design of our accurate and efficient KD-
based pFL. We first give an overview of ACE-pFL. Then we
propose the EMD-based client clustering and two optimization
methods on the performance of KD, i.e., dynamic distillation
temperature adjustment and the triple distillation strategy.

A. Overview

Architecture. ACE-pFL consists of multiple clients and
a server, as shown in Figure 1. Since data across different
clients is usually non-IID, it leads to low accuracy and high
training overhead [17], [18], [19]. An EMD-based client
clustering module is conducted to group clients with similar
data distribution into the same cluster to mitigate the adverse
effects of non-IID. Then, each client performs local model
training on its private dataset and completes model prediction
on the public dataset with dynamic distillation temperature
adjustment. After that, the client uploads the soft predictions
to the server, which completes the aggregation. Finally, the
client downloads the aggregated results, performs local model
update based on the triple distillation strategy, and continues
a new round of local training. When the number of rounds
reaches the preset value, the pFL is completed. The details of
ACE-pFL are shown in Algorithm 1.

Design Goals. Our goal is to design an accurate and efficient
KD-based pFL framework. Our scheme faces challenges such

Algorithm 1 ACE-pFL
Input: Local dataset Dn of client n, public dataset D0, num-

ber of clients N , training rounds R, number of clusters
|V |, initial temperature T0, filtering parameter K, learning
rate η1, η2.

Output: Local personalized models w = [w1, w2, · · · , wN ].
1: Execute the EMD-based client clustering 2.

// Client n ∈ [N ].
2: Initialize the local personalization model wn.
3: for r = 1, · · · , R do
4: Local training on its private dataset Dn.
5: Adjust the distillation temperature based on Eq. (2).
6: Compute the softmax value sr

n(x) of the logits zn.
7: Perform top-K filtering, and upload sr

n(x) to server.
8: Update the local personalized model according to the

aggregated result base on Eq. (4).
9: end for

// Server.
10: for r = 1, · · · , R do
11: Aggregate sr

n(x) base on Eq. (3).
12: Distribute the aggregated result sr to all clients.
13: end for

as low model accuracy, high training time, and excessive com-
munication burden. Against the above challenges, we describe
three objectives as follows:
• Model accuracy. Enhance model accuracy by accounting

for the specific data distribution of individual clients.
• Computation efficiency. We should accelerate model

convergence (i.e., fewer rounds) to reduce training time.
• Communication efficiency. The scheme reduces

communication overhead between clients and the
server.

B. EMD-Based Client Clustering

Data across various clients is often non-IID, which
reduces the local personalized model accuracy. We design
an EMD-based client clustering to group clients with similar
data distribution into the same cluster. By exploiting the
similarity between clients to aggregate them, information
can be obtained from more valuable data to personalize the
local model, thereby improving the local personalized model
accuracy.

A straightforward and primitive method is for each client to
upload its own data distribution and let the server complete the
clustering. We adopt the EMD as the metric to calculate the
similarity of data distribution between each pair of clients [26].
A larger EMD between data distributions of two clients
indicates stronger dissimilarity. Specifically, the i-th client’s
data distribution is defined as Ri = [ri

1, r
i
2, · · · , ri

C ] with C
classes, where ri

c∈[C] denotes the frequency of each class
of data samples in its private dataset Di; the j-th client’s
data distribution is defined as Rj = [rj

1, r
j
2, · · · , r

j
C ] with C

classes, where rj
c∈[C] denotes the frequency of each class of

data samples in its private dataset Dj . Let E = [em,n] be the
ground distance between ri

m∈[C] and rj
n∈[C], i.e., E[m][n] =
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|ri
m∈[C] − rj

n∈[C]|. Let F = [fi,j ] be a 0/1 matrix, indicating
whether to move the ri

m in Ri to the rj
n in Rj . We define

the objective function minF

∑C
m=1

∑C
n=1 fm,nem,n, which

subjects to the constraints:

fm,n ≥ 0, 1 ≤ m ≤ C, 1 ≤ n ≤ C
C∑

n=1

fm,n ≤ C, 1 ≤ m ≤ C

C∑
m=1

fm,n ≤ C, 1 ≤ n ≤ C

The optimal F is found by solving this linear optimization
problem. Their similarity can be expressed by E(Ri, Rj) =∑C

m=1
∑C

n=1 fm,nem,n∑C
m=1

∑C
n=1 fm,n

. Finally, the server computes the simi-
larity of any of two clients and completes clustering based
on the similarity matrix. However, the complexity of it is
O(N2), which may introduce significant computation and
communication overhead when the number of clients is large.

To address this issue, we propose an EMD-based
client clustering by computing the similarity of only one
client instead of all clients. Concretely, we first ran-
domly select the z-th client, and then compute the EMD
between it and other clients, obtaining a similarity vec-
tor [E(R1, Rz), E(R2, Rz), · · · , E(Rn, Rz)]. We do this for
two main reasons: (1) comparability; (2) transitivity. First,
if E(Ri, Rz) is low, we consider that the i-th client has similar
data distribution with the z-th client. This is because EMD is
a standardized metric used to measure the difference between
two data distributions. Based on optimal transport theory [27],
the key idea is that a smaller EMD distance indicates higher
similarity between the two distributions, ensuring comparabil-
ity between the data distributions of different clients. Second,
if E(Rx, Rz) and E(Ry, Rz) is close, the x-th and y-th
clients can be considered to have similar data distribution.
This is because the invariance and balance principles in
optimal transport theory provide the theoretical foundation
for the transitivity of EMD distance [27]. Invariance suggests
that when multiple distributions are similar, their distribution
characteristics will not change drastically. Specifically, if two
distributions Rx and Ry are both similar to a third distribution
Rz , the similarity between Rx and Ry will be preserved,
resulting in a small EMD distance between them. The balance
principle further indicates that if both Rx and Ry are similar
to Rz , their difference will not increase significantly, as their
similarity is balanced and propagated through Rz . These two
principles ensure the transitivity of EMD distance, allowing
the similarity between distributions to propagate progressively
without significant change. This design makes sense because
the choice of data distribution is often limited (e.g., the number
of classes is not infinite). Therefore, this vector is sufficient
to determine the similarity between clients. Finally, the server
employs a clustering algorithm such as K-means [23] to cluster
the similarity vector. Compared with the original method,
the complexity is reduced from O(N2) to O(N), effectively
accelerating the client clustering. The details are shown in
Algorithm 2.

Algorithm 2 EMD-Based Client Clustering
Input: Data distribution Rn of client n, number of clients N ,

number of clusters |V |.
Output: Client n belongs to cluster v.

1: Select a client z at random.
// Client n ∈ [N ].

2: Compute the similarity E(Rn, Rz)with client z.
3: Upload the result to server.

// Server.
4: Employ a K-means algorithm to cluster the similarity

vector.
5: Broadcast the outputs to all clients.

C. Dynamic Distillation Temperature Adjustment

In KD, temperature is utilized to control the sharpness of
soft prediction distributions. The lower temperature makes soft
prediction distributions sharper and therefore more concen-
trated on the class with the largest probability, whereas the
higher temperature makes the distribution flatter [20]. The
model may require different information at various stages of
training. According to the characteristics of the model training,
the lower temperature should be used to let the model focus on
the most critical knowledge to accelerate model convergence
in the early stage of pFL training [21]. As pFL proceeds, the
model will gradually converge, and the higher temperature
allows the model to take into account more classes, which
can help the model to better generalize to new data [22].
However, in traditional KD, the fixed temperature results in
static knowledge transfer that cannot dynamically adapt to
the local model training. Therefore, it is essential to design
a strategy for dynamically adjusting the temperature. This
process can dynamically adjust the attention of the model,
ensuring that the knowledge transfer can be fully utilized and
balanced during different stages of training.

Local Training. In the r-th communication round, we fix
the number of classes C and train wn for several epochs
locally. Specifically, the n-th client first trains wn rely-
ing on its own private dataset Dn by applying a gradient
descent step: wn ← wn − η1▽Ln(wn), where η1 is the
learning rate. The loss function of client n: Ln(wn) =
1

Dn

∑Dn

i=1 LCE(wn; xi, yi), where LCE is the cross-entropy
loss function that measures the difference between the pre-
dicted results and the true labels on the private dataset. Then,
client n completes model performance testing on the public
dataset D0 and outputs the softmax value of the logits zn,
i.e., sr

n(x) = exp(zn
c /Tr)∑C

c=1 exp(zn
c /Tr)

, where Tr is the distillation
temperature in the r-th round, and x denote data samples from
D0. The designed Tr primarily adheres to the following three
design principles: (1) the rate of increase for the distillation
temperature transitions from fast to slow; (2) after reaching a
certain temperature, it undergoes piecewise repetitive changes,
where the rate of increase returns to the initial speed of
the previous stage; and (3) it possesses good flexibility and
adjustability. Therefore, Tr is computed as follows:

Tr = T0 +
k1

1 + e−k2
⌊ r

r0
⌋+

2k1

1 + e−k2∆r
,
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Fig. 2. The client i’s workflow of ACE-pFL in the r-th round. During
training, each client trains its local model with four kinds of knowledge:
labels (LCE ), aggregated results(LKD), and past predictions from previous
rounds in both local (LSD) and global (LGD) perspectives.

where

∆r = r − r0⌊
r

r0
⌋, (2)

where k1, k2, and r0 denotes dynamic distillation temperature
adjustment hyperparameters. T0 denotes the initial tempera-
ture. k1

1+e−k2
is similar to the sigmoid function, which makes

the growth rate change from fast to slow. The use of ⌊ r
r0
⌋

means that when r reaches a certain threshold r0, the function
will experience piecewise changes. The parameters k1 and k2

can control the growth rate of the function, making it very
flexible and adaptable. When the total number of classes is
large, the dimension of soft predictions will be high, leading
not only to increased communication overhead but also to a lot
of noise (due to the addition to each coordinate). To address
these issues, we exploit a simple but effective filtering strategy:
top-K. In top-K filtering, we only keep the top K largest soft
prediction probabilities, and the remaining probabilities are
set to zero for each client. This strategy can not only retain
important information, but also avoid unimportant information
interfering with KD.

Aggregation. To obtain the aggregated results, the server
aggregates the soft prediction distributions uploaded by the
clients according to the EMD-based client clustering:

sr =
∑

v

∑
n∈v Dv

D
{ 1
|v|

∑
n∈v

sr
n(x)}, (3)

where |v| is the number of clients in cluster v. Considering the
previous client clustering results, the aggregation rule is the
intra-cluster arithmetic average and the inter-cluster weighted
average, where the weights are assigned according to the
number of data samples in the cluster. It has two benefits:
(1) intra-cluster arithmetic averaging ensures that all clients
within a cluster contribute equally to the aggregated result.
This is important because it reflects the central tendency of
the data within that cluster, preventing any single client from
disproportionately influencing the outcome; (2) inter-cluster
weighted averaging accounts for the varying sizes of clusters.
Larger clusters, which may have more data and provide more
reliable updates, can contribute more to the final aggregation.
This reflects the principle that more representative data should
influence the overall model more.

D. The Triple Distillation Strategy

In traditional KD, reliance on aggregated global results
as the sole knowledge source may overlook other valuable
information, resulting in less-than-ideal distillation effective-
ness. Therefore, we propose a triple distillation strategy (i.e.,
local-to-global distillation, local-to-local distillation, global-
to-global distillation) to perform knowledge distillation from
different sources. Specifically, we extract explicit knowledge
from aggregated global soft predictions of the latest round
and exploit implicit knowledge in both local and global
perspectives of previous rounds. The key idea of using models
trained in previous rounds is to treat their outputs as different
perspectives of the features [28]. This method helps the latest
model integrate multiple feature representations, providing
more information for training, thereby enhancing the learning
ability of the model. Therefore, ACE-pFL can improve the
model performance by providing rich multi-source knowledge.

Local-to-Global Distillation. We extract global knowledge
by performing knowledge distillation on local soft predictions
and aggregated global soft predictions. The key idea is that
the ensemble of local models often improves personaliza-
tion performance compared to the performance of individual
models. To extract the knowledge, we take the aggregated
results of the local model soft predictions as the global
knowledge. By imitating the global knowledge, the local per-
sonalized model is able to learn from the global. Specifically,
this distillation loss is given by the KL divergence between
local soft predictions sr

n(x) and aggregated global soft
predictions sr:

LKD(sr
n(x), sr) = T 2

r KL(sr
n(x)||sr).

Local-to-Local Distillation. To fully exploit implicit knowl-
edge in the local model, a local and local distillation strategy is
proposed to enable the local model to extract knowledge from
itself. Specifically, the local personalized model in the previous
rounds performs knowledge distillation with the personalized
model in the current round. The key idea is that we treat the
outputs of the local personalization model from the previous
rounds as a different representation of the features, which
provides more information for personalized training.

We design an efficient method to perform local and local
knowledge distillation. Specifically, the local personalized
models in the previous rounds are considered as candidates,
and the best performing one is selected for knowledge distil-
lation with the local personalized model in the current round.
Given the large size of deep learning models, we maintain
only one optimal model per client and replace it when a
more optimal model becomes available. The distillation is
implemented as follows:

LSD(sr
n(x), sb

n(x)) = T 2
r KL(sr

n(x)||sb
n(x)),

where sb
n(x) is the soft predictions in b-th round.

Global-to-Global Distillation. To fully extract implicit
knowledge in the global perspective, we propose a global
and global distillation strategy, which enables the local model
to better focus on the global dynamics. Specifically, the
aggregated soft predictions in previous rounds are used for
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knowledge distillation with the aggregated soft predictions in
the current round. The main idea is that we focus on the
convergence rate of the model from the aggregated results
of previous rounds, which provides guidance for the local
personalized model training.

Similar to the local-to-local approach, we average the aggre-
gated soft predictions in the previous rounds and perform
knowledge distillation with the aggregated soft predictions
in the current round. To reduce the local storage overhead,
we store only the average of aggregated soft predictions for
each client in the previous rounds, updating it when a new
round is completed. The distillation is as follows:

LGD(sr,

∑r−1
i=1 si

r − 1
) = T 2

r KL(sr||
∑r−1
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r − 1
).

Local Update. Finally, we utilize four kinds of knowledge
to define the loss function for the local personalized model
update: the loss with the public dataset labels, the local-
to-global distillation loss, the local-to-local distillation loss,
and the global-to-global distillation loss. The loss with the
public dataset labels is calculated using the cross-entropy loss
function LCE . The personalized loss function of client n is a
weighted combination of four loss terms:

Lptrain,n(wn) = α1LCE + α2LKD + α3LSD + α4LGD,
(4)

where α1, α2, α3, and α4 are the corresponding weight
hyperparameters. We discuss the effect of different weight
hyperparameters on ACE-pFL in Section IV-D. Each client
completes a local update based on the obtained knowl-
edge by applying a gradient descent step: wn ← wn −
η2▽Lptrain,n(wn), where η2 is the learning rate. Then, it con-
tinues a new round of local training. When the number of
rounds reaches the preset value, the pFL task is completed.
Figure 2 shows the client i’s workflow of ACE-pFL in the
r-th round.

E. Discussion

In pFL, privacy guarantees are provided by keeping the data
local and only intermediate results (e.g., data distributions and
soft predictions) are passed. However, previous works have
demonstrated that if soft predictions may contain sensitive
information, the model is likely to transfer the privacy of
its own training data to another model [20], [29], [30].
Additionally, the local data distribution should be shared
among clients in EMD-based client clustering, which may also
lead to privacy leakage. Differential privacy is an effective
means to prevent privacy leakage, and can be well compatible
with ACE-pFL. The basic idea is to inject noise into the
soft predictions (data distributions) of each batch of data,
thereby reducing the differences between soft predictions (data
distributions). The data distribution is a 1 × C vector, which
has a small data volume and only needs to be transmitted
once in Algorithm 1, unlike the repeated transmission of soft
predictions during pFL. Therefore, it does not incur high
communication overhead. Furthermore, the number of the
public dataset may become an issue in practice. We can apply

random transformations such as rotation, translation, crop-
ping, padding, and horizontal flipping, which correspond to
observing the same object from different angles. Alternatively,
we can modify the color, brightness, sharpness, contrast, and
saturation of images, representing variations in observing the
same object to different degrees. The public dataset is also
available on data modeling and analysis competition platforms
such as Kaggle. Therefore, the problem of insufficient data
volume can be alleviated by the above way.

IV. EVALUATION

Our evaluation answers the following Research Questions
(RQs).
• RQ1: What is the performance of ACE-pFL, and how

does it compare to other schemes?
• RQ2: What is the performance of EMD-based client

clustering in distinguishing clients with different data
distributions?

• RQ3: How do varying parameters, such as the number
of clusters, initial temperature, privacy budget, Top-K,
and the weights of loss terms affect the performance of
ACE-pFL?

• RQ4: Why can ACE-pFL improve the accuracy of KD-
based pFL?

A. Implementation and Experimental Setup

Implementation. We implement ACE-pFL based on the
PyTorch framework in Python 3.8. All experiments are con-
ducted on a server running Ubuntu 18.04, which is equipped
with an Intel(R) Xeon(R) Gold 6133 CPU @ 2.5GHz, 128GB
RAM, and three NVIDIA 4090 GPUs with 24GB memory
each. The CUDA version is 12.0. Our evaluation primarily
employs three metrics: the average testing accuracy of all local
personalized models, the total training time, and communica-
tion overhead.

Datasets. The datasets encompass three classification tasks,
namely image (i.e., CIFAR-10 [31], CIFAR-100 [31], and
CheXpert [32]), text (i.e., Reuters-21578 [33]), and audio (i.e.,
Speech Commands [34]), as follows:
• CIFAR-10 contains 60,000 32 × 32 color images equally

divided into 10 classes, while 50,000 is used for training
and 10,000 is used for testing.

• CIFAR-100 has 100 classes with 600 images each, which
is equivalent to CIFAR-10 augmented version.

• CheXpert is a large chest X-ray dataset comprising
224,316 images. Each image is associated with predic-
tions for 14 common chest X-ray findings.

• Reuters-21578 is a collection of documents containing
news articles, with 90 classes, 7769 training files, and
3019 testing files. We extract 20 classes from them.

• Speech Commands is an audio dataset of 10 single spoken
words designed to help train keyword spotting systems.
The training data has about 40,000 samples.

We randomly select 10% from each of the above datasets as
the public dataset.
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TABLE I
THE TESTING ACCURACY (%) OF DIFFERENT SCHEMES IN TWO NON-IID SETTINGS (I.E., β = 0.1 AND π = 2) ON FIVE DATASETS

(I.E., CIFAR-10, CIFAR-100, CHEXPERT, REUTERS-21578, AND SPEECH COMMANDS)

Models. For the image classification task, we employ four
different model structures including GoogLeNet [35], VGG-
16 [36], and ResNet-34/50 [37]. ACE-pFL has 20 clients
assigned to them in four different model structures, i.e.,
five clients per model. Each client uses the pre-trained
DistilBERT [38] language model for the text classification
task. To solve the audio classification task, we use the
mel-spectrogram instead of raw audio for training the models
(i.e., VGG-19 [39] and ResNet-34 [37]). There are 10 clients
per model.

Dataset Partitions. We introduce two dataset partitions, i.e.,
the Pathological partition P (π) [8] and the Dirichlet partition
D(β, p) [40]. π represents the number of classes owned by
each client in the Pathological partition. p is prior distribution
of labels, and β measures the different distributions among
clients in the Dirichlet partition. A smaller β value indicates a
higher degree of non-IID data. They all adhere to the standard
partitioning scheme for training, validation, and test datasets.

Parameter Settings. We set the number of clients to 20 and
the number of clusters to 3. In addition we set the batch
size B as 128, the training rounds R as 300, and the initial
temperature T0 as 30. The hyperparameter settings are as
follows: k1 = 5, k2 = 5, r0 = 100, α1 = 0.4, α2 = 0.3,
α3 = 0.2, α4 = 0.1, η1 = 0.01, and η2 = 0.015.

Baselines. To validate the proposed ACE-pFL, we intro-
duced the following FL schemes for comparison. FedAvg [8],
FedProx [41], and SCAFFOLD [42] are traditional FL
schemes, which are used as baseline benchmarks for com-
parison. Per-FedAvg [9], pFedMe [10], CD2-pFed [11], and
FedALA [12] are pFL schemes, but they only support homo-
geneous models. Therefore, we should ensure that all clients’
models have the same architecture, that is, we employ ResNet-
50 for the image classification task, use the pre-trained
DistilBERT language model for the text classification task,
and utilize ResNet-34 for the audio classification task. The
comparison with these schemes aims to illustrate that even
in the presence of model heterogeneity, our proposed scheme
can achieve relatively superior results compared with homoge-
neous model deployment schemes. FedDF [13], FedAD [14],

KT-pFL [15], and FedKD [16] are pFL schemes that can
support heterogeneous models. The heterogeneous model
deployment settings are as described above.

B. RQ1: Overall Results

We compare the testing accuracy, training time, and com-
munication overhead of ACE-pFL with traditional FL schemes
and other pFL schemes. We consider two scenarios: β =
0.1 and π = 2, which are two extreme examples of non-IID.

Testing Accuracy. Table I shows the testing accuracy of
different schemes in two non-IID settings. We observe that
ACE-pFL outperforms 2.97%–56.93% of all the baselines.
The reasons are three fold. First, due to the poor ability of
the personalized requirements, FedAvg, FedProx, and SCAF-
FOLD perform poorly in different non-IID settings. Second,
the personalized schemes which only support homogeneous
models may not well capture the needs of an individual
client, so the testing accuracy is still relatively low. Although
Per-FedAvg and FedALA proposed their methods that could
adaptively aggregate the global model and local model, it still
could not extract information effectively. pFedMe used the
proximal term to extract the desired information from the
local model and learned additional personalized models. How-
ever, learning the personalized models with the proximal
term is an implicit way to extract the desired information.
Third, the KD-based pFL schemes result in slightly lower
testing accuracy than ACE-pFL due to the limited knowl-
edge source and the relatively fixed distillation process (i.e.,
fixed distillation temperature). ACE-pFL improves the testing
accuracy in pFL because it can better satisfy the individual
needs.

Training Time and Communication Overhead. Table II
shows the training time and communication overhead of
different schemes in two non-IID settings. We find that the
training time is 7.78× lower than other schemes at most,
and the communication overhead is about 184× lower at
most. Furthermore, we compare ACE-pFL with other baseline
methods in terms of time and communication overhead under
two non-IID settings and across five datasets, and calculate
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TABLE II
THE TRAINING TIME (MIN) AND COMMUNICATION OVERHEAD (GB) OF DIFFERENT SCHEMES IN TWO NON-IID SETTINGS (I.E., β = 0.1 AND π = 2)

ON FIVE DATASETS (I.E., CIFAR-10, CIFAR-100, CHEXPERT, REUTERS-21578, AND SPEECH COMMANDS)

the overall average improvement. We also find that ACE-pFL
can reduce the training time by 57% and the communication
overhead by 59.12× on average. There are two main reasons.
On one hand, the model convergence speed is accelerated,
which leads to a reduction in the total number of training
rounds of the personalized model, and therefore the total
training time is reduced. On the other hand, transmitting soft
predictions can significantly reduce communication overhead
compared to exchanging a large number of high-dimensional
model updates. This reduction is more pronounced as the
number of training rounds increases.

C. RQ2: Effectiveness of EMD-Based Client Clustering

We validate the effectiveness of the proposed EMD-based
client clustering in different non-IID scenarios. Specifi-
cally, we consider six non-IID data situations (i.e., β =
0.1, 1.0, 10 and π = 2, 5, 7), and compare ACE-pFL with other
schemes on CIFAR-10 in terms of testing accuracy, training
time, and communication overhead.

Table III presents the testing accuracy in different non-
IID settings, while Table IV displays the training time and
communication overhead. We have two observations. First,
ACE-pFL outperforms other schemes in both testing accu-
racy and training time with lower communication overhead.

TABLE III
THE TESTING ACCURACY (%) OF DIFFERENT SCHEMES IN SIX NON-IID

SETTINGS (I.E., β = 0.1, 1.0, 10 AND π = 2, 5, 7) ON CIFAR-10

Second, ACE-pFL exhibits a maximum decrease in testing
accuracy of 12.67% as the non-IID becomes more severe.
As β (or π) decreases, other schemes experience an average
testing accuracy decline of 23.94% (or 18.84%). We believe
this is attributed to the EMD-based client clustering, which
groups clients with similar data distributions. This enables
each cluster of clients to focus more on specific data during
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TABLE IV
THE TRAINING TIME (MIN) AND COMMUNICATION OVERHEAD (GB)

OF DIFFERENT SCHEMES IN SIX NON-IID SETTINGS (I.E., β =
0.1, 1.0, 10 AND π = 2, 5, 7) ON CIFAR-10

TABLE V
THE TESTING ACCURACY (%), COMPUTATION (S), AND COMMUNICATION

OVERHEAD (MB) USING A SIMILARITY MATRIX OR A SIMILARITY
VECTOR FOR EMD-BASED CLIENT CLUSTERING IN SIX

NON-IID SETTINGS ON CIFAR-10

local training, thereby contributing to the enhancement of
model performance. The accelerated convergence results in a
decrease in overall training time and communication overhead.

We compare the testing accuracy, time, and communication
overhead of ACE-pFL using a similarity matrix and a similar-
ity vector for EMD-based client clustering. According to the
results in Table V, we can observe that the accuracy loss is
only about 2%, but the computation overhead is reduced by
13 × on average and the communication overhead is reduced
by 20 × on average. Since z is randomly selected, it may
impact the stability of system performance. To validate this,

TABLE VI
THE TESTING ACCURACY (%), TRAINING TIME (MIN), AND

COMMUNICATION OVERHEAD (GB) FOR DIFFERENT SELECTIONS OF z
FOR EMD-BASED CLIENT CLUSTERING ON CIFAR-10. THE

CONTENTS ARE THE AVERAGE RESULTS OF RANDOMLY
SELECTING z 5, 10, OR 20 TIMES

we conducted experiments with 5, 10, and 20 repetitions,
using different client z. Table VI presents the averages of
testing accuracy, training time, and communication overhead
across different repetition counts. The results indicate that the
system performance is stable, with no significant variations in
testing accuracy, training time, or communication overhead,
demonstrating the robustness of ACE-pFL.

D. RQ3: Effect of Hyperparameters

We evaluate the impact of hyperparameters on ACE-pFL.
The considered hyperparameters include the number of clus-
ters |V |, initial temperature T0, Top-K filtering strategy, and
the weights of loss terms α1, α2, α3, α4. We consider two
scenarios: β = 0.1 and π = 2.

Effect of the Number of Clusters |V |. We investigate how
different the number of clusters |V | affects the performance of
ACE-pFL. We set the number of clients N to 20 and consider
different |V |, namely 2, 3, and 5. The results in Table VII
and VIII show the testing accuracy, training time, and com-
munication overhead in different |V | settings. We observe that
the performance of ACE-pFL is optimal when the number of
clusters is 3. When the number of clusters is too small, the
data within each cluster may be overly diverse. Conversely,
when the number of clusters is too large, it may lead to a loss
of crucial data features. Both scenarios can result in a decline
in local model performance, affecting global aggregation.

We display the results of EMD-based client clustering in
different |V | settings in Figure 3. To illustrate that we cluster
clients with similar data distributions, in each cluster we
calculate the EMD between the data distributions of every pair
of clients and take the average as the EMD value of the cluster.
We have two findings. First, the small values of EMD for each
cluster (i.e., EMD close to 0) indicate that the data distributions
within each cluster are nearly an IID scenario. Second, if the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Wuhan University. Downloaded on May 31,2025 at 07:55:08 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON NETWORKING

Fig. 3. Schematic of the clustering of ACE-pFL. The first row is β = 0.1, the second row is π = 2. Each point represents a client. Points with the same
color indicate that the clients are grouped into a cluster.

TABLE VII
THE TESTING ACCURACY (%) OF ACE-PFL IN TWO NON-IID SETTINGS

(I.E., β = 0.1 AND π = 2) ON FIVE DATASETS (I.E., CIFAR-10,
CIFAR-100, CHEXPERT, REUTERS-21578, AND SPEECH

COMMANDS) IN THE |V | = 2, 3, 5

TABLE VIII
THE TRAINING TIME (MIN) AND COMMUNICATION OVERHEAD (GB) OF

ACE-PFL IN TWO NON-IID SETTINGS (I.E., β = 0.1 AND π =
2) ON FIVE DATASETS (I.E., CIFAR-10, CIFAR-100, CHEXPERT,

REUTERS-21578, AND SPEECH COMMANDS)
IN THE |V | = 2, 3, 5

number of clusters is too large, the number of clients within
each cluster becomes too small, it may hinder the improvement
in local model performance, which aligns with the previous
results. Therefore, considering both the differences in data
distribution within clusters and the number of clients within
each cluster, it is essential to carefully select the number of
clusters to ensure the optimal performance.

Effect of Initial Temperature T0. We explore how different
initial temperature T0 affects the testing accuracy of ACE-pFL.
In KD, the use of temperature helps soften the probability
outputs, directing the attention of the student model towards

Fig. 4. The testing accuracy (%) of ACE-pFL in two non-IID settings
(i.e., β = 0.1 (the left) and π = 2 (the right)) on five datasets (i.e.,
CIFAR-10, CIFAR-100, CheXpert, Reuters-21578, and Speech Commands)
in the T0 = 5, 10, 20, 30, 50.

logits with lower magnitudes. We set the initial temperatures
T0 to be 5, 10, 20, 30, and 50. Figure 4 shows the testing
accuracy in different T0 settings on five benchmark datasets.
We observe that as the initial temperature increases, the testing
accuracy initially rises and then decreases. ACE-pFL achieves
the highest testing accuracy when the initial temperature is 30.
This is because when the initial temperature is too low, the
soft prediction distributions may become too sharp, making
it challenging for the local model to capture some complex
features in the global information. On the other hand, when the
initial temperature is too high, the soft prediction distributions
may be too smooth, leading to losing the ability to capture
the true data distribution. An appropriate initial temperature
strikes a balance between a smooth soft prediction distribu-
tions and capturing the features of the true data distribution,
ultimately achieving the highest testing accuracy. Selecting an
appropriate initial temperature ensures that ACE-pFL performs
optimally.

Effect of Top-K Filtering Strategy. We investigate how
different Top-K filtering strategy affects the performance of
ACE-pFL. Table IX shows the testing accuracy, training time,
and communication overhead in different Top-K filtering strat-
egy settings on five datasets. We find that as K increases, the
testing accuracy gradually rises, but communication overhead
also increases, with little difference in training time. This is
because as K increases, more information from the retained
soft prediction distributions aids the model in extracting more
crucial details, contributing to improved accuracy but at the
cost of increased communication overhead. For example, the
testing accuracy with K = 5 only decreases by an average
of 1.78% compared to K = 10 across two data distribu-
tion scenarios on CIFAR-10, which is within an acceptable
range. Additionally, the training time and communication
overhead for K = 5 are lower. Therefore, the choice of
the Top-K filtering strategy should consider both time and
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TABLE IX
THE TESTING ACCURACY (%), TRAINING TIME (MIN), AND

COMMUNICATION OVERHEAD (GB) OF ACE-PFL IN TWO NON-IID
SETTINGS (I.E., β = 0.1 AND π = 2) ON FIVE DATASETS

(I.E., CIFAR-10, CIFAR-100, CHEXPERT, REUTERS-21578,
AND SPEECH COMMANDS) IN THE DIFFERENT K

communication overhead, as well as potential testing accuracy
loss.

Effect of the Weights of Loss Terms. We investigate how
different weights of loss terms affect the testing accuracy of
ACE-pFL. We consider equal weights and unequal weights.
For unequal weights, given that the cross-entropy loss (i.e.,
LCE) is crucial for model training, we fix its weight at 0.4 and
focus on exploring the contributions of the remaining three
knowledge terms to the testing accuracy of ACE-pFL. Table X
presents the testing accuracy on five datasets in two non-IID
settings with various weights. We have two observations.
First, the testing accuracy under unequal weights is consis-
tently higher than that under equal weights, indicating that
although providing multiple sources of knowledge contributes
to enhancing KD, the contributions of these knowledge sources
are not equal. Second, the highest accuracy is achieved under
unequal weight ②, indicating the relative importance of the
three knowledge terms (i.e., local-to-global > local-to-local >
global-to-global). Therefore, it is crucial to appropriately set
the weights for each loss term.

TABLE X
THE TESTING ACCURACY (%) OF ACE-PFL IN THE β = 0.1 AND π = 2
ON FIVE DATASETS.① DENOTES α1, α2, α3, α4 = 0.25, 0.25, 0.25, 0.25;
② DENOTES α1, α2, α3, α4 = 0.4, 0.3, 0.2, 0.1;③ DENOTES α1, α2, α3,

α4 = 0.4, 0.3, 0.1, 0.2;④ DENOTES α1, α2, α3, α4 = 0.4, 0.2, 0.3,
0.1;⑤ DENOTES α1, α2, α3, α4 = 0.4, 0.2, 0.1, 0.3;⑥ DENOTES α1,

α2, α3, α4 = 0.4, 0.1, 0.2, 0.3;⑦ DENOTES α1,
α2, α3, α4 = 0.4, 0.1, 0.3, 0.2

TABLE XI
THE TESTING ACCURACY (%) OF ACE-PFL IN THE β = 0.1 AND

π = 2 ON FIVE DATASETS.“W/O” DENOTES THE ABSENCE OF
EMD-BASED CLIENT CLUSTERING.“W/” DENOTES THE PRESENCE

OF EMD-BASED CLIENT CLUSTERING

E. RQ4: Ablation Experiments

We conduct ablation experiments to examine the effective-
ness of our proposed EMD-based client clustering, dynamic
distillation temperature adjustment, and the triple distillation
strategy. We evaluate the testing accuracy of ACE-pFL on five
datasets in two non-IID data situations (i.e., β = 0.1 and
π = 2).

EMD-based Client Clustering. We examine the effec-
tiveness of EMD-based client clustering. Table XI displays
the testing accuracy of ablation experiments with EMD-based
client clustering in the β = 0.1 and π = 2 on five datasets.
We find that using EMD-based client clustering effectively
enhances testing accuracy. For instance, when β = 0.1, the
testing accuracy on CIFAR-10 increases by 6.06%; when
π = 2, the testing accuracy on CIFAR-10 increases by
8.60%. This improvement is attributed to the grouping of
clients with similar data distributions, which allows clients
within each cluster to capture key features of the data more
effectively. Therefore, EMD-based client clustering is essential
for enhancing the performance of ACE-pFL.

Dynamic Distillation Temperature Adjustment. We
examine the effectiveness of dynamic distillation temperature
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TABLE XII
THE TESTING ACCURACY (%) OF ACE-PFL IN THE β = 0.1 AND

π = 2 ON FIVE DATASETS.“FIX.” DENOTES A FIXED
DISTILLATION TEMPERATURE.“DYNA.” DENOTES

A DYNAMIC DISTILLATION TEMPERATURE

adjustment. Table XII presents the testing accuracy of ablation
experiments with dynamic distillation temperature in the β =
0.1 and π = 2 on five datasets. We observe that using dynamic
distillation temperature adjustment effectively enhances testing
accuracy. For example, when β = 0.1, the testing accuracy
on CIFAR-10 increases by 5.57%; when π = 2, the testing
accuracy on CIFAR-10 increases by 7.12%. This improvement
is due to the influence of temperature on the extent of soft
prediction distributions. Gradually increasing the temperature
as the model converges makes the distribution smoother,
allowing the model to focus on more information and, con-
sequently, improving model performance. Therefore, dynamic
distillation temperature adjustment is crucial for enhancing the
effectiveness of KD.

Dynamic distillation temperature adjustment can be done
through linear and nonlinear functions. We set the initial
temperature T0 = 30 and the training rounds r = 300.
We present five different functions in Figure 5. f5(x) rep-
resents a linear function to adjust temperature, while f1(x)
to f4(x) represent nonlinear functions. f1(x) and f4(x) are
more complex nonlinear functions, featuring segmented linear
parts (i.e., k1

1+e−k2
⌊ r

r0
⌋ and 1+ek1

k2
⌊ r

r0
⌋) and sigmoid-like parts

(i.e., 2k1
1+e−k2∆r and 1+ek1∆r

k2
), resulting in different tempera-

ture adjustment behaviors during various training stages. The
difference lies in the gradual slowdown in the growth rate of
f1(x), while the growth rate of f4(x) gradually accelerates.
f2(x) and f3(x) are simpler sigmoid-like nonlinear functions.
The difference lies in the gradual slowdown in the growth rate
of f2(x), while the growth rate of f3(x) gradually accelerates.

We obtain the testing accuracy of these five temperature
adjustment curves on five datasets and observe that using the
f1(x) temperature adjustment curve yields the highest testing
accuracy, as shown in Table XIII. This is mainly due to the
following three reasons. First, gradually increasing the tem-
perature during different training stages guides the model to
focus more on global knowledge. Second, higher temperatures
make soft prediction distributions smoother, facilitating more
exploration in the parameter space, which allows the model
to better capture global features of the data. Third, gradually
increasing the distillation temperature at a slower pace helps
avoid drastic fluctuations during the training process.

The Triple Distillation Strategy. We examine the effec-
tiveness of triple distillation strategy. Table XIV displays
the testing accuracy of ablation experiments with the triple

Fig. 5. Dynamic temperature adjustment curve.

TABLE XIII
THE TESTING ACCURACY (%) OF ACE-PFL IN THE β = 0.1 AND

π = 2 ON FIVE DATASETS.fi(x) DENOTES DYNAMIC TEMPERATURE
ADJUSTMENT CURVE, WHERE i ∈ {1, 2, 3, 4, 5}

TABLE XIV
THE TESTING ACCURACY (%) OF ACE-PFL IN THE β = 0.1 AND

π = 2 ON FIVE DATASETS.“SINGLE” DENOTES SINGLE DISTILLATION
STRATEGY (I.E., LOCAL-TO-GLOBAL DISTILLATION).“DOUBLE”

DENOTES DOUBLE DISTILLATION STRATEGY (I.E., LOCAL-
TO-GLOBAL DISTILLATION, AND LOCAL-TO-LOCAL DIS-

TILLATION).“TRIPLE” DENOTES TRIPLE DISTILLATION
STRATEGY (I.E., LOCAL-TO-GLOBAL DISTILLATION,

LOCAL-TO-LOCAL DISTILLATION, AND GLOBAL-
TO-GLOBAL DISTILLATION)

knowledge distillation strategy in the β = 0.1 and π =
2 on five datasets. We find that the triple distillation strategy
achieves the highest testing accuracy. For instance, when β =
0.1, the testing accuracy on CIFAR-10 increases by 11.09%
and 6.57% compared to the other two strategies; when π = 2,
the testing accuracy on CIFAR-10 increases by 11.87% and
7.04%. This is because the triple distillation strategy provides
a richer and more diverse source of knowledge, contributing
to an enhanced the effect of KD.

V. RELATED WORK

Personalized Federated Learning. FL [8] is a machine
learning setup in which multiple clients collaborate to train
a global model without exposing raw data locally. However,
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it entails training a single global model, failing to meet
the heterogeneous and personalized model requirements of
individual clients. To address this issue, pFL aims to tailor
models for each client. We consider the following four classes
of pFL methods: hybrid model, meta-learning, regularization
technique, and knowledge distillation.

The first approach to pFL is hybrid model, where clients
learn a mixture of the global model and local models.
FedPer [43] introduced a novel neural network architecture
consisting of a base layer and a personalized layer. The server
trains the base layer through FedAvg, while the personal-
ized layer is locally trained to create individualized models.
FedALA [12] designed an adaptive local aggregation module,
which can adaptively aggregate the global model and local
model towards the local objective on each client to initialize
the local model before training in each iteration. The second
approach to pFL is meta-learning. Per-FedAvg [9] was influ-
enced by model-agnostic meta-learning and constructed an
initial meta-model that can be effectively updated after a single
gradient descent step. However, it is computationally expen-
sive due to reliance on the Hessian matrix. The third approach
to pFL is using different regularization terms. Reference [10]
introduced pFedMe utilizing Moreau envelopes as clients’
regularized loss functions, which helped decouple personalized
model optimization from the global model learning for pFL.

KD-based pFL. Different from the above methods,
we mainly focus on the knowledge distillation approaches
because they are more convenient and effective. CD2-
pFed [11] introduced a novel cyclic distillation-guided channel
decoupling framework for personalizing the global model
under diverse non-IID settings. FedDF [13] proposed an
ensemble distillation method for model fusion, specifically
training a global model using unlabeled data on the outputs of
the clients’ models. FedAD [14] introduced a novel distillation
algorithm that aggregates structural knowledge, addressing
the inherent heterogeneity in FL while explicitly balancing
local model diversity and consensus. KT-pFL [15] enhanced
collaboration among clients with similar data distributions by
adaptively reinforcing personalized soft predictions for each
client through linear combinations of all local soft predictions.
FedKD [16] employed a one-time offline knowledge distilla-
tion using a public dataset, developing a privacy-preserving
and communication-efficient pFL framework. Regrettably, the
above pFL schemes lead to more loss of accuracy due to inade-
quate knowledge extraction and complex learning mechanism,
and have large training time and communication overhead.
In this work, we propose ACE-pFL to improve the accuracy,
and reduce the training time and communication overhead.

VI. CONCLUSION

In this paper, we propose a new accurate and efficient
pFL framework based on KD, called ACE-pFL. Our proposed
EMD-based client clustering addresses the adverse effect of
non-IID data in pFL. We design the dynamic distillation
temperature adjustment method to better adapt to the dynamic
training process of pFL. We employ the triple distillation
strategy to leverage not only the knowledge from aggregated
global soft predictions but also the implicit knowledge from

local and global perspectives. Experimental results demon-
strate that ACE-pFL achieves a tripartite balance between
testing accuracy, training time, and communication overhead.
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