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Heterogeneous Federated Learning Frameworks for
Balancing Job Completion Time and Model
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Abstract—Federated Learning (FL) is a secure distributed
learning paradigm, which enables potentially a large number
of devices to collaboratively train a global model based on
their local dataset. FL exhibits two distinctive features in job
requirement and client participation, where FL jobs may have
different training criteria, and clients possess diverse device
capabilities and data characteristics. In order to capture such
heterogeneities, this paper proposes a new FL framework, Hca,
which aims to strike a balance between the job completion time
and model accuracy. Specifically, Hca builds upon a number
of innovations in the following three phases: 1) pre-estimation:
we first derive the optimal set of parameters used in training
in terms of the number of training rounds, the number of
iterations and the number of participating clients in each round;
2) client selection: we design a novel device selection algorithm,
which selects the most effective clients for participation based on
both client historical contributions and data effectiveness; and 3)
model aggregation: we improve the classic FedAvg algorithm by
integrating the utility in consecutive rounds as a weighted factor
into aggregation computation. We further improve our model to
consider a more realistic scenario, where multiple performance
factors are difficult to quantify and coupled with each other,
under the privacy protection requirement. We propose HcaRL, a
deep reinforcement learning (DRL) based smart client selection
and model aggregation algorithm, to solve the problem in the
above scenario. To evaluate the performance and effectiveness
of Hca and HcaRL, we conduct theoretical analysis and testbed
experiments over an FL platform FAVOR. Extensive results show
that Hca can improve the job completion time by up to 34% and
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the model accuracy by up to 9.1%, and can reduce the number of
communication rounds required in FL by up to 75% compared
with two state-of-the-art FL frameworks. In addition, HcaRL
has a further performance improvement over Hca, including a
5% increase in model accuracy and a 23.6% reduction in job
completion time.

Index Terms—Federated learning, client selection, time and
accuracy balancing.

I. INTRODUCTION

EDERATED learning (FL), a privacy-preserving dis-

tributed learning paradigm, enables potentially a large
number of devices to collectively train a global machine
learning (ML) model using the devices’ own local dataset
[1], [2], [3]. With FL, an FL server in a cloud is used
to coordinate participating clients synchronously in multiple
communication rounds. In each round, a small subset of these
clients is selected to train an ML model using their local
data. After a number of training iterations are performed,
clients will send their local model updates to the FL server,
which aggregates these updates using an aggregation algorithm
(e.g., FedAvg [4]) to update the global model parameters
and send them back to clients. This process iterates until a
pre-specified model accuracy or the maximum training time
(i.e., job completion time) is reached [5]. While the training
process of FL is similar to that of conventional ML, FL
executions have distinctive features in job requirements and
client participation. Improving FL model accuracy is generally
achieved by increasing computational loads, which consume
a larger amount of energy and need more time. But some FL
jobs require making decisions in a short time, such as Gboard -
Google keyboard, which makes typing suggestion while typing
[6]. The trade-off between time and accuracy brings new chal-
lenges and opportunities in FL training [7], [8]. To start with,
we need to properly select three critical control parameters
including the total number of training rounds, the number
of iterations and the number of participating clients in each
round [7], [9], [10]. This turns out to be challenging in that
there exist intrinsic correlations among these parameters, and
their collective impacts on the job completion time or model
accuracy are largely unknown. On the other hand, exhaustive
search for the optimal values is practically infeasible. Second,
FL potentially involves a large number of clients, each with
heterogeneous device capability and data characteristics. For
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instance, the clients with high computing capability and more
relevant datasets can contribute more to the quality of the
model training. Consequently, how to select the most effective
set of clients for participation during each training round
becomes critically important.

Existing works in FL have focused on improving model
accuracy [11] or reducing energy cost [12], usually with a
random client selection algorithm. Considerable efforts have
been made to improve the effectiveness of client selection
[13], [14]. However, they typically only consider device per-
formances such as local loss or bias, while ignoring a crucial
factor - the quality of the data. In FL, a major challenge is
that data distribution among clients is unbalanced and not
independent and identically distributed (non-IID). Irrelevant
or even harmful data can significantly affect the FL training
performance. Proper client selection can mitigate this problem.
We will further discuss this in detail in Sec. II. To compre-
hensively capture the heterogeneity of FL, in this paper, we
propose a new FL framework, Hca, for optimizing the FL
training performance. First, we assign weighted indices to the
model loss and job completion time to capture the different job
training preferences. The value of the index is defined by FL
jobs. Minimizing the sum of two weighted factors can strike a
balance between job completion time and model accuracy in
the training process. Second, to characterize the heterogeneity
in device capability and data characteristics, we define two
criteria in the client selection process: historical effectiveness
which is related to the weighted index and captures the esti-
mated convergence rate; and data effectiveness, measuring the
matching degree between client’s dataset and the target job’s
dataset, as well as the similarity between two participating
clients’ datasets. The objective is to select the most effective
clients with higher values in these two criteria.

To strike a balance between job completion time and
model accuracy, we consider the FL training process in three
stages: 1) pre-estimate stage, which aims to derive the three
control parameters in polynomial time; ii) client selection
stage, which focuses on selecting the most effective clients
based on historical and data effectiveness. This stage utilizes
the three control parameters obtained in the first stage to
enable faster and better FL training while satisfying job
preference; iii) model aggregation stage, which improves the
classic FedAvg aggregation algorithm to further enhance the
FL model training accuracy. The combined optimizations in
the three stages not only meet the basic requirements in job
completion time and model accuracy, but also maximize the
training performance. The problem turns out to be particularly
challenging from two aspects, i) neither the job completion
time nor the model loss presents an explicit expression related
to the three control parameters; ii) the client section problem is
a 0-1 quadratic program (QP), which is proven to be NP-hard.

In this context, we propose a new FL framework, Hca,
to solve the three-stage problem. We first reformulate the
trade-off objective in the pre-estimate stage into a function
capturing the three control parameters through analysis on the
upper bounds of the training time and model accuracy. The
reformulated problem is strong multi-convex and can be solved
by the block coordinate decent (BCD) algorithm [15]. During

the client section stage, we first linearize the 0-1 QP into an
integer linear program (ILP). The relaxed version of the ILP
can be solved directly to obtain a fractional solution. We then
design a randomized pairwise rounding algorithm to round the
fractional solution to the required integer solution. Noticeably
that our proposed pair-by-pair rounding technique guarantees
the feasibility of the solution with bounded integral gap.
Finally, in the model aggregation stage, we select most relevant
local updates and integrate the model loss reduction between
consecutive rounds as a weighted factor into the aggregation
calculation, to further enhance the FL. model accuracy.

We extend to study a realistic scenario, where the prac-
tical requirement of privacy protection and the coupling of
various performance factors are considered. We exploit deep
reinforcement learning (DRL) technique to jointly solve the
client selection and aggregation optimization problems. In
this scenario, instead of expressing the selection criteria in
the model, we use DRL techniques to analyze the effects
of various complex coupling factors while avoiding the risk
of privacy leakage caused by data characterization. A new
algorithm, HcaRL, is proposed to solve the extended problem.
HcaRL can jointly optimize the client selection and model
aggregation in the each round in FL training.

We conduct extensive experiments to evaluate the perfor-
mance of Hca and HcaRL. The experiments train a CNN
model on three common datasets over the FL platform FAVOR
[16]. The highlights of the results are: i) the weighted factor «
plays a trade-off between the time and accuracy requirements;
ii) Hca reduces the job completion time by up to 34% and
improves the model accuracy by up to 9.1% at the same time
when compared with FAIR [17] and FedAvg [4]; iii) Hca
reduces the number of training rounds required by up to 67%
and 75%, when compared to the above two benchmarks; iv)
HcaRL improves the model accuracy by up to 5% and reduces
the job completion time by up to 23.6% compared with Hca,
which indicates that HcaRL outperforms Hca on all counts,
not to mention the other benchmarks; v) HcaRL can achieve
better performance even on data distribution with high non-1ID
degree.

The rest of the paper is organized as follows. We present
the related work in Sec. II. We introduce system model in
Sec. III and describe the design of Hca in Sec. IV. Sec.
V proposes a smart client selection and model aggregation
algorithm, HcaRL, based on DRL techniques. We evaluate Hca
and HcaRL in Sec. VI and conclude the paper in Sec. VIL

II. RELATED WORK

FL Framework Optimization. Since McMahan et al. [4]
proposed the first FL. framework and demonstrated its effec-
tiveness, many efforts have been devoted to improving the
performance of FL. Some works [18], [19], [20] investi-
gated the theoretical convergence guarantees in heterogeneous
settings, while others were proposed to improve the struc-
ture of FL framework [21], [22], [23], [24]. Briggs et al.
[25] proposed a hierarchical clustering approach to catego-
rize clients by the similarity of their local updates. Wang
et al. [26] designed a hierarchical aggregation approach by
clustering clients and explored the optimal cluster structure
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with resource constraints. Wang et al. [27] filtered out the
irrelevant updates by ameliorating aggregation method. Leroy
et al. [28] designed an Adam-based per-coordinate averaging
strategy for global aggregation. Wang et al. [10] proposed a
control algorithm to minimize the loss function under a given
resource budget. Luo et al. [9] analyzed how to optimally
select the essential control variables to minimize the total
cost while ensuring convergence. Huba et al. [29] proposed
an asynchronous FL system and experimentally demonstrate
that asynchronous FL is significantly faster than synchronous
FL when training across millions of devices. Nguyen et
al. [30] proposed a new buffered asynchronous aggregation
method, FedBuff, which combines the best properties of
synchronous and asynchronous FL. Liu et al. [31] proposed
an adaptive asynchronous strategy to minimize the impact of
stragglers based on DRL. Compared with [31], the adaptive
optimization of our paper covers a wider range of parameters.
Therefore, our paper shows more comprehensive and efficient
adaptability. Reddi et al. [32] propose an adaptive federated
optimization framework that enhances convergence speed and
performance in federated learning by introducing adaptive
optimizers such as ADAGRAD, ADAM, and YOGI. Their
work focuses on algorithmic improvements through adaptive
optimization, whereas we address system heterogeneities to
balance job completion time and model accuracy. Nguyen
et al. [33] proposed FedDRL, which adaptively determines
aggregation weights for each client using DRL. None of the
existing approaches jointly considered the client selection and
heterogeneous requirements of different FL jobs. Our proposal,
Hca is different in that it aims to jointly optimize the training
time and model accuracy through proper selection of training
parameters and model aggregation.

FL Client Selection. Nishio and Yonetani [34] presented
a client selection method based on the hardware and wireless
resources. Ribero andd Vikalo [35] proposed a client selection
strategy by utilizing the progression of clients’ weights from
an Ornstein-Uhlenbeck process. Wang et al. [16] selected
clients by leveraging DRL technique to speed up convergence.
Chen et al. [36] proposed a client selection scheme by min-
imizing the variance of the stochastic gradient. Cho et al.
[37] proposed the Power-of-Choice client-selection framework
to balance convergence speed and solution bias. While both
address the topic of client selection, our approach focuses
more on designing a client selection method that balances
historical contributions and data effectiveness, specifically tai-
lored for heterogeneous FL jobs. Deng et al. [17] constructed a
quality-aware selection scheme by learning quality estimation.
Such client selection strategies largely rely on the client
performance such as local losses or bias, while completely
ignoring the effect of clients’ data properties. Another relevant
work considered data property [38], and designed a method to
select high-quality clients and data samples. Lai et al. [39]
propose a client selection algorithms to improve the time-to-
accuracy performance of FL training. Yu et al. [40] propose
to dynamically adjust and optimize the trade-off between
maximizing the number of selected customers and minimizing
the total customer energy consumption. Luo et al. [41] present
an adaptive client sampling algorithm to mitigate system
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TABLE I
LIST OF NOTATIONS

total number of training rounds

number of local iterations in each round
maximum completion time

maximum loss requirement

weight of loss requirement

total training time after K rounds

number of available clients before training

F(w®) | the loss of global model after k& rounds’ training
F(w?F) | the loss of client 7 ’s local model after round &
F(w") | the minimum loss, a fixed value
¥ the set of available clients in round k
I* the set of initially screened clients in round k
Ny, number of clients in I'F
M number of participating clients
zF whether or not select client ¢ in round &
UF the historical effectiveness of client ¢ in round k
r the estimated utility of client ¢ in round &
qF accuracy factor, the reduction of model loss
Cfo’z the estimated training time of client ¢ in round k
~F the irrelevance of client ¢ in round &
Yo the upper bound of the irrelevance
s"(i,) | the similarity between i and j ’s data in round k
wk the aggregation weight of client ¢ in round k

and statistical heterogeneities in federated learning, aiming
to reduce convergence time. Our proposed frameworks not
only reduce the convergence time but also improve the model
accuracy through a multi-stage approach. Li et al. [42] propose
PyramidFL, a fine-grained client selection algorithm that takes
full advantage of data and system heterogeneity within selected
clients to more effectively analyze their utility. Sun et al.
[43] propose a hardware-aware model selection algorithm that
achieves good performance in training efficiency and model
performance. Different from all the above works, Hca designs
a comprehensive client selection criterion by incorporating
both client’s device performance and data properties with
proven theoretical guarantee.

III. SYSTEM MODEL
A. System Overview

Heterogeneous Job Preferences. We assume that an FL job
comes with its maximum completion time requirement C and
accuracy demand e, where ¢ is the required difference between
the model loss and the minimum loss (which is determined
by the property of the loss function). As discussed, Hca, aims
to balance an FL job’s completion time and model accuracy
and selects the most efficient participating clients for model
aggregation, while satisfying two training requirements. Con-
sidering FL jobs have different preferences on the completion
time and model accuracy, we define a weight index « for a
FL job, to capture the trade-off between the two values, where
a € [0,1]. The closer « is to 1, the higher value the FL job
puts on the accuracy than the completion time. « affects both
the control parameter estimation process before FL training
and the client selection process in each training round.
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Training Process and Decision Overview. To effec-
tively achieve the unique requirement of time and accuracy
trade-off, we consider that a training process consists of three
stages. First, upon the arrival of an FL job, Hca computes
three control parameters based on the job preference and
requirements: i) K, the total number of training rounds; ii) 7,
the number of iterations in each round; and iii) M, the number
of participating clients per round. In each training round,
we use the control parameters derived in the pre-estimation
stage to complete client selection, training, and aggregation.!
Second, in each round, Hca evaluates the effectiveness of
available clients based on their device capabilities and data
characteristics, and selects the most effective clients from N
available clients. Let a set of binary variables {x¥ € {0,1}]i €
Hk,k € K} denote the selection, where I* is the set of
available clients in round k. If client i is selected to participate
in the training process in round k, x¥ = 1, otherwise z¥ = 0.
Third, Hca performs model aggregation. Stage 2 and stage 3
are carried out under the premise of the control parameters
determined in stage 1. The first two stages will be described
in details in the next two subsections. Notations are listed in
Table I.

B. Pre-Estimation Stage

Problem Formulation. To achieve the trade-off between the
two preferences, we introduce a weight index « and use a
weighted sum approach to combine the two objectives [45].
The weight index o can be adjusted by sliding from O to
1, to customize the task optimization objective with specific
requirement preference. The weighted sum method has been
widely used to achieve multi-objective optimization in various
fields of research [46], [47], [48]. The difference between
the ranges of the two objectives needs to be normalized for
consistency. In our implementation, we unified the ranges of
the model loss and completion time values using the min-
max normalization approach based on their actual value ranges
obtained from pretraining. We formulate the control parameter
pre-estimation problem as an optimization problem whose
objective is to minimize the weighted completion time and
model loss while satisfying job training requirements. We call
this problem as PEP (Pre-estimation Problem). Let CE, be the
total training time after K rounds, and F(w’) be the model
loss after K rounds. F(w™*) is the minimum loss, which is a
fixed value. The PEP for each incoming job can be formulated
as follows:

! Although our derivation of the convergence upper bound in the pre-
estimation stage is based on the basic FedAvg algorithm, recent works [19],
[44] explicitly state that this derivation process can be naturally extended
to other federated optimization methods. Moreover, the client selection
and model aggregation algorithms proposed in this paper will not affect
the correctness of the derivation process. It should be noted that random
selection and average aggregation provide the lower bound of the convergence
performance for client selection. In order to ensure the convergence of our
proposed algorithm, we improve FedAvg from different aspects, such as
considering data relevance in the selection phase and model relevance in the
aggregation phase. These improvements are designed to mitigate the effects of
deviating models and maintain convergence performance similar to or better
than FedAvg. Therefore, it can be naturally deduced that our algorithm have
a better convergence performance than FedAvg.

P1:
min - (1-@)E[Cigy] + aE[F(w™)] (1)
s.t. E[C’tat] <C, (1a)
E[F(w")] - F(w") <&, (1b)
K,M,7eZ". (1c)

Constraint (la) guarantees that the expected training time
is less than the time requirement. Constraint (1b) ensures that
the expected loss after training K rounds is less than the loss
requirement.

Challenges. Solving P1 directly is intractable, because
neither the expectation of training time E[CX,] nor the model
loss E[F(w’)] is an explicit expression related to the decision
variables K, 7 and M.

C. One-Round Client Selection Stage

Selection Criteria. For each training round k, given the
collection of available clients I¥, Hca selects at least M clients
for this round to maximize the quality of the aggregated global
model. Hca evaluates the effectiveness of client i for the target
job from two aspects: 1) historical effectiveness, which applies
to clients that have participated in the target job before. It
evaluates the effectiveness of each available client based on
staleness mechanism [49] using training time and quality from
previous training rounds. The weight parameter « is integrated
into this evaluation function to capture the heterogeneity of
job preference; and ii) data effectiveness, which measures the
quality and the fitness of client i’s dataset for the target job.
Data effectiveness includes the data relevance (’yl) between
client i and the target job, as well as the data similarity
(s"(i, 7)) between the two participating clients i and j.

Historical Effectiveness. In particular, the historical effec-
tiveness of client i in round k& (Uik) is defined as:

agf
. (1704)650’;’ Atm‘?éoa?él
Ul =11 tot?’éoa—l 2
*atkc;ti tot ( #70,a=0
0, otherwise

where ¢F and 650; are the estimated utility and estimated
completion time in round k, both of which are estimated
from historical training information. Note that C’tot includes
client i’s both computation time and communication time. U, Uk
is a concept similar to the training speed, representing the
estimated model quality per unit of time. We multlply the
weight factor « and (1 — ) in front of g* and Ctot, in order
to meet the time and accuracy trade-off. We use the reduction
of the model loss to define the accuracy factor in round ¢, i.e.,
¢t = F(w'™!) — F(w?). It should be noted that the quality
value of clients that did not participate in round ¢ is 0. The
FL framework records the ¢! values of all participating clients
in each training round. The staleness mechanism is used to
obtain a more accurate estimated quality g¥. g¥ is calculated
based on the weighted average of the quality of each previous
round of training {q},¢?,...,¢ "'}, where the weight of ¢!
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in round 7 decreases with the difference from the current round
number k—t. Specifically, the weight of ¢! is determined by an
exponential function 3%~*. The constant base /3 is introduced,
with a value range of (0,1). 5 determines the decay rate of
time, which controls the change in weight between different
rounds. Smaller 3 values will lead to faster decay, so that
the quality of earlier rounds has less impact on the current
estimated quality, and vice versa. So g¥ is defined as:

Zt 1 qzﬁk t
T—k—1 op_+
Sy BEt

0, otherwise

, Jk, st gb >0

4G = 3)

Similarly, the estimated completion time of round k Ctot is
also obtained from the historical information:

k: 1 ~ti gk—t
Ctotﬂ
:1 kat

0, otherwise

ki
ak,i _ ’ EIc’tot
tot —

“4)

where C[7’ is the completion time of round .

Data Effectiveness — Relevance: Besides the historical
information, to avoid the negative effect of unbalanced and
non-IID data distribution on participating clients, we also hope
to obtain information from data as a selection criterion under
the premise of protecting privacy. First, we define the relevance
7¥ to measure the matching degree between client i’s dataset
and the target job’s dataset. The target job’s dataset refers to
any dataset that can identify the target job. For example, in the
digit classification task, a dataset containing ten types of digit
pictures from O to 9 can be used as the target job’s dataset.
Its main purpose is to obtain all classification labels D¥ to
calculate the correlation v¥. To protect the privacy of clients
and the job, Hca adopts private set intersection (PSI) protocol
[50], which is a widely used lightweights multi-party secure
computing protocol. In PSI protocol, both parties involved in
the calculation collaborate to compute the intersection of these
sets, without disclosing any information about their respective
sets (except for the intersection part) during the calculation
process. This ensures privacy protection while calculating
correlations, eliminating the need for the clients to directly
share tags with the FL server and thereby mitigating the risk
of data leakage. Let Y;* denote the set of client i ’s labels in
round &, and let Y denote the target labels. The dataset of client
i in round k is D¥. D;k represents the dataset that overlaps
with the target labels, i.e., D} = {(z,y)|ly € YF NY}. We
define ¥ as follows:

12
|1Df|

"= (5)

Obviously, the larger v is, the more suitable client i is for
the training.

Data Effectiveness — Similarity: Clients with similar data
appearing in the same training round may waste training
resources, as we want to get as much data information as
possible from the available clients for training. Therefore,
we use a privacy-preserving method to measure the data
similarity between clients, and select clients whose data infor-
mation is as unique as possible to participate in each training
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round. Hca measures the similarity s(i,j) of two clients’
datasets D; and D; by a privacy-preserving method [38].2
In particular, client i locally generates content embedding
vectors ¢f = {¢f, |m € [SF]}, where each embedding
vector ¢f, € R, Then a projection matrix w € Rle*Le
is selected to encode the Lg-dimensional vector into [g-
dimensional vector h(¢F, ), where l¢ < Lg [51]. Each client
computes the prOJectlon vector h(d)lm) = sgn(w - qﬁﬁm),
where sgn(-) denotes signum function. Then the sketch of
dataset D¥ is HF = Zme[sk] h(¢},,)- To protect the privacy
of each sample, a randomlzed response mechanism is applied
to generate a noisy sketch H ¥ to replace HF. Given the noisy
content sketch of each client, the s1m11ar1t1es between two
clients’ datasets D¥ and Df is defined as:
7k . ok
s8(i,5) = % (6)
[HF||HY]

If s¥(i, j) is too large, the datasets of clients i and j are too
similar, hence the training efficiency by selecting these two
clients is low.

Problem Formulation. The goal in the second stage is to
maximize the quality of clients and the data diversity® at the
beginning of round k.

P2:
max ZUisz— Z sF (i, j)ak f 7
i€lk i,j€lk
st. M <Y af <R, (7a)
i€lk
Chigh < Q,W el”, (7b)
%x >70,VZEI[ (7¢)
z¥ € {0,1},Vi e T". (7d)

Constraint (7a) indicates that in round K, the central server
selects at least M and at most R participating clients, where
R = min {2M, 2+ 1} Since clients may drop during train-
ing, more than M clients are selected before each round,
and the top M training models are selected for the current
round’s aggregation. Note that constraint (7b) ensures that the
estimated completion time does not exceed the average one-
round maximum completion time according to the estimation
result of P1. Constraint (7¢) filters out mismatched clients by
an upper bound ~p.

Discussion on Privacy Trade-offs and Overheads. We use
the PSI protocol to measure client data relevance to target
task data. Despite its privacy benefits, PSI’s computational and
communication overheads may affect practical applications.
However, since our focus is on optimizing FL performance,
including model accuracy and job completion time, we use
PSI in the client selection phase to ensure data relevance and
minimize privacy risks. We don’t extensively consider PSI’s
overheads for the following reasons:

2This method sketches each client’s dataset by a low-dimensional vector
based on JL-transformation [51] and protects the privacy of each sample using
a random response mechanism. The high efficiency and low computation cost
of this method has been proven in [38].

3Same as P1, two items in the objective function are normalized.
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Acceptability of Computational Overhead. Although the
computational complexity of the PSI protocol is proportional
to the set size, some studies have shown that the computational
overhead of the PSI protocol is acceptable in practical appli-
cations. For example, Pinkas et al. [50] proposed a scalable
PSI protocol based on OT extension, which demonstrates good
computational efficiency on large-scale datasets. Additionally,
our client selection process is executed only once at the begin-
ning of each training round, so the impact of computational
overhead on overall performance is minimal.

Optimization of Communication Overhead. The commu-
nication overhead of the PSI protocol mainly comes from
the interaction between clients and the server. However, by
designing the protocol appropriately, the communication over-
head can be significantly reduced. For example, Chen et
al. [36] proposed a lightweight PSI protocol that optimizes
the communication mechanism to bring the communication
overhead within an acceptable range. Moreover, our system
assumes reliable network connections between clients and
the server, so communication overhead does not significantly
impact the training process.

Reasonableness of Privacy Trade-offs. Although the PSI
protocol offers significant privacy protection, our model does
not need to extensively consider privacy trade-offs. This is
because the PSI protocol already provides sufficient privacy
protection to prevent client data leakage. For example, Li
et al. [1] pointed out that combining PSI with differential
privacy (DP) can further enhance privacy protection, but such
enhancement is not necessary in our application scenario. Our
goal is to optimize the overall performance of FL rather than
pursue extreme privacy protection.

In summary, while the computational and communication
overheads and privacy trade-offs of the PSI protocol are impor-
tant considerations, in the context of this paper, these factors
have minimal impact on overall performance. Therefore, we
choose to use the PSI protocol in the client selection phase
to ensure data relevance while minimizing potential privacy
risks.

Challenges. Notice that P2 is a 0-1 quadratic programming
(QP). The heaviest k-subgraph problem (HSP) which is NP-
hard [52] can be reduced to P2 by ignoring constraints (7b)
and (7¢).

IV. DESIGN OF HcA
A. Design Overview

As shown in Fig. 1, Hca consists of three stages.

i. Pre-estimate stage. To meet the target job’s weighted
time and accuracy demand, we explore the specific
mathematical expression of E[CE,] and E[F(w’)] in
P1, and rewrite P1 to a complex non-convex optimiza-
tion program P3 expressed by three decision variables
K, M and 7. Next, we relax the integral constraints in P3
and prove that the relaxed P3 is a multi-convex problem.
We then leverage an efficient BCD method in Alg. 1 to
solve it and obtain the value of K, M and 7.

ii. Client selection stage.

iii. Model aggregation stage.

We next introduce three stages in Sec. IV-B, Sec. IV-C and
Sec. IV-D respectively.

B. Solving Pre-Estimation Problem

Problem Reformulation. We reformulate the objective func-
tion of P1 into a function of the decision variables K, M and
7. The total training time C[, consists of computation time
and communication time. Let C¥ denote the computation time
of one iteration in round k, and C§ denote the communication
time between participating clients and the central server in
round , then we have CE, = Zle(TCf—i-Cg ). Our intuition
is that larger M leads to larger probability of suffering from
straggler effect and risk of communication delay. Here, we
adopt an approximate representation of E[CE,] from [9]*:

M-1 _
E[C[5]) ~ K ((N 1 AC, + Cl) T+ 02) . (®

where c; is the smallest of CF, AC] is the range of CF, i.e.,
NC) = mgﬁﬂCﬁ — Cf;|} and O is the average of all C¥,
both of W}jlich can be obtained by historical information. As for
the expression of E[F (w’ )], we express it by the convergence
upper bound [19].3

In order to obtain the specific expression of E[F(w)] in
P1 with respect to the independent variables {K, M, 7}, we
introduce Lemma 1.

Lemma 1: The convergence upper bound after K rounds in
the case of non-IID data distribution is given by

N-—-M 9
+M(N1))7 ©)

where A; and A, are constants and determined by model and
system properties.

Proof: Please see Appendix A for the proof of Lemma 1.l

Then P1 can be reformulated as following:

P3:
. Al AQT N-—-M
L 8 D) L R(w
T O‘(KT+ K ( +M(N—1))+ (w ))

+(1—a) (K ((Aj\{_llacl +c1> T+02)> (10)

M—-1 _
sit. K ((]\HACl + Cl) T+ CQ) S C, (loa)
Al AQT N-—-M
2 227 7 )<
=+ (1 M(N1)>—E’ (10b)
K, M,7r€Z" M<N. (10c)

P3 is a complex integer optimization problem. To solve it,
we first relax constraint (10c) to K, M, 7 > 1 and M < N.
We denote the relaxed version of P3 by P3. We next analyze
the multi-convex property of P3, and propose Lemma 2.

4This approximation has been adopted and proven its effectiveness in [9],
we omit the theoretical proof and will demonstrate that the solution of P3
achieves a near-optimal performance of the original problem P1 in Sec. VI-B.

5The convergence upper bound is a common and effective approach to
estimating the model accuracy in literature [19].
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Lemma 2: P3 is non-convex but strong multi-convex.

Proof: Please see Appendix B for the proof of Lemma 2.1

Algorithm 1 Pre-Estimation With BCD

Il’lpllt: a, C, g, N, Al, 1427 C1, Acl,ég, €0, loss
Output: K**, M** and 7**

1: choose a feasible solution Dy + (Ko, Mo, 70);

2. for k=1,2,--- do

3: Substitude My_1,7;—1 for M*, 7* in subl to get Kj;

4: Substitude Kj_1,7;—1 for K* 7" in sub2 to get Mjy;

5: Substitude Ky_1, My_1 for K*, M* in sub3 to get 7;

6: if HDk — Dk,1|| < €g then

7: (K*,M*7T*)<—(Kk7Mk,Tk);

8: Break;

9: else

10: k+—k+1;

11: end if

12: end for

13: Substitute the eight rounding combinations of
(K* MY 7)o (K M), (7)), (K] M2,

(1), (LK), (M, (7)), (LK), [M], (), (TK™ ],
(M) L)), (KT, (M, [r]), (TK*], [M*], (7)),
([K*T,[M*],[7*])) into the objective function of P3
and choose the combination that is feasible and has the
minimum value as (K**, M**, 7**);

14: Return (K**, M™**, 7**).

Algorithm Design. We leverage a widely used method,
block coordinate decent (BCD) [15] algorithm, to solve P3.
BCD method has been proven to have good convergence for
multi-convex problem in polynomial time [15]. The main idea
of BCD is to cyclically solve the convex subproblems over
each control variable while fixing the remaining variables.
After obtaining the fractional solution, we pick out the best
feasible integer solution by rounding fractional variables. The
pre-estimation stage is presented in Alg. 1. Lines 1-12 use
BCD method to solve P3. Line 13 is the rounding process to
restore the integer constraints in P3. We define the three kinds
of subproblems are as follows:

subl : K* = arg mlénf(K;M*,T*)with (10a),(10b),K > 1
sub2 :

M* = argm}én f(M; K*, 7")with (10a), (10b), M <N, M > 1

sub3: 7" = argrr%in f(r; K*, M")with (10a), (10b),7 > 1

C. Solving One-Round Client Selection Problem
D. Model Aggregation

The details of Sec. IV-C and Sec. IV-D are described in our
previous work [53].

Theorem 1: Hca can meet the job completion time and
model accuracy requirements of the FL job.

Proof: Please see Appendix C.H
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V. HCARL: SMART CLIENT SELECTION AND MODEL
AGGREGATION BASED ON DEEP REINFORCEMENT
LEARNING

In the previous sections, we proposed the Hca framework to
optimize heterogeneous FL tasks. In practice, it is difficult to
accurately model the FL training process using only traditional
mathematical methods. First, the training of each round is
affected by many factors, including heterogeneity in device
capability, data distribution and so on. These factors are
coupled and interact with each other. It is intractable to extract
them into independent explicit constraints by using traditional
mathematical methods. Second, given heterogeneous devices
and unbalanced and non-IID data distribution, the aggregation
weight of each local model should be carefully designed. The
allocation of aggregation weights has a direct impact on the
global model of each round. Third, although we manage to
use privacy-preserving methods to obtain the data features,
from the perspective of security, these methods always have
the disadvantage of either inaccurate measurement or privacy
leakage risk. Therefore, we consider client selection and
aggregation weight allocation as joint decision variables and
reformulate the client selection model with the objective of
long-term weighted FL performance. And an optimization
framework based on RL is proposed to solve it.

In this section, we discuss an improved FL training frame-
work that utilizes DRL technique for the joint model, making
optimal decisions in environments that are not fully known.
We reformulate the selection-aggregation problem in Sec. V-A.
Then we present our improved algorithm framework, HcaRL,
in Sec. V-B.

A. Selection-Aggregation Model

Selection Criteria. Instead of only obtaining the information
before the round k, we redefine g* and C’ﬁ;i to be the long-
term training utility and completion time in FL system for all
rounds, both of which can be expressed as the expectation
of the cumulative discounted value. A discounting factor
B € (0, 1] for different periods is introduced to calculate the
cumulative value over training time, which is a basic technique
in DRL that relates the value of quality and completion time
to the time domain. Specifically, g is defined as:

T

g =) B gl

t=1

Y

Similarly, the estimated completion time of round k, éfoz
is also obtained from the historical information:

T
ki t—1vti k
Ciot = E B Cio;

t=1

12)

where C’tt(’f;t is the completion time of round z.

We multiply the weight factor  and (1 — «) in front of
g; and C},, in order to meet the time and accuracy trade-off.
Our objective P can be expressed as:

N N
PZ@Z@—(l—a)Z tot
i=1 i=1

13)
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Problem Reformulation. The objective in the second stage
is to maximize the weighted sum of utility and the completion
time at the beginning of round k. The decision variables are
client selection set x* = {2¥ € {0,1}]i € I*)k € K}
and the aggregation weights set w* = {w} € [0,1]|i €
I* k € K}. The client selection and aggregation weight
optimization problem aiming at maximizing the long-term
weighted performance P can be reformulated as follows.

Pé:

,{Ei,xk P (14)
N
st. M <Y ¥ <R, (14a)
=1
iy C
Clsial < 2. vie T, (14b)
¥ € {0,1},Vi e I¥, (14c)
wl €[0,1],Vi € TF. (14d)

Constraint (14a)-(14c) are the same as constraints (7a)-(7c).
Constraint (14d) indicates that the aggregation weight of client
i in round k is between O and 1.

Challenges. The optimization objective is a function related
to model loss, which changes with each round of training and
cannot be measured by any explicit functional relationship.

B. Algorithm Design

To deal with the above challenges, we leverage a DRL
approach based on the Deep Deterministic Policy Gradient
(DDPG) algorithm. We formulate the original problem of
model selection and aggregation at the central server of FL
into a DRL paradigm.

1) Problem Transformation: To maximize our customized
objective of the FL job, we transform P6 to the Markov
decision process (MDP), which is described by the tuple
{s*,a” r* s'*}. Here s* denotes a set of states and a* denotes
a set of actions. The reward 7% at global round k is computed
by the reward function R: s* x a* — R and future rewards
are discounted by the factor 3 € [0,1]. After the actions
are conducted jointly by all the clients, the FL environment
interacts with the agent, and then it returns the corresponding
reward 7* to the agent. After every 7 local updates, the FL
environment turns to the next state s’*, which is determined
by the state transition probability p(s**!|s* a*) that comes
from the state transition function P: s* x a* x s¥ — [0,1].
Then, the agent observes the next state s’* and stores the tuple
{s*,a* r* s'*} in its own replay buffer R;. Accordingly, the
agent updates its actor and critic networks by samples from
the replay buffer R;. After finishing the training process of
DRL network, we use the trained DRL network to perform
the dynamic aggregation weight allocation and client selection.
The details of four essential elements are defined as following.

1) Agent. We consider the situation where one central
server is responsible for the client selection and the aggrega-
tion procedure in each training round k. For such, we take
the central server as the RL-based decision-making agent
whose outputs are the impact factors of all the candidate

clients indicating the contributions of locally trained models
to the aggregated global one. The agent can observe the state
information s* from the external FL environment. Given the
state information s*, the agent determines clients’ aggregation
weights {wF};cpx through its policy network. Then the client
selection decision {z¥},cpx is jointly determined by w’ and
the control parameter M, that is, the largest top-M clients of
wk are selected to participate in this training round, and the
aggregation weights are re-allocated according to the weight
proportion in w?.

2) State. We hope that the state can reflect the relationship
between the quality of the clients’ locally trained model and
the clients’ data. To this end, we design the state of the
FL environment consisting of: i) The losses of the global
model on each client’s dataset. The losses reflect correlations
between clients’ data and the global model’s effectiveness
for each client. ii) The weight of each client in the previous
global round w*~!. This parameter reflects the relationship
between the decision variable and the resulting global model.
iii) The current global round index k, which reflects the
current training progress. Therefore, the state observed by
the agent at global round k is represented by a vector s* =
{{P(h). wh e, 1),

3) Action. The purpose of the agent is to get the weight
of each client’s influence on the aggregation in the upcoming
kth training and the resulting client selection strategy. Given
the input state, the agent decides the action at global round «,
i.e., the aggregation weights {w¥},cpx for all the clients. The
selection variable x¥ is decided accordingly. Specifically, after
getting the aggregation weight w? of each client z¥ for the
incoming round k, we descending rank the clients according
the weights, and get the top M clients with the largest weights.
Then their selection variables are set to 1, i.e., xf =1,
which means that they will participate in the training round k.
Accordingly, for the other clients, the selection variables are
set to zero, :Ef =0.

4) Reward. Given the action a”, the agent receives a reward
r¥ € R from the environment. The reward is supposed to
increase when P* increases. One penalty term is added in the
reward to punish the agent for choosing actions that violate
constraints (19b). Therefore, the reward r* € R at round k is
defined as:

rk = pk _pk (15)
where PF indicates the objective value defined by Eq. (13)
in round k and p”* indicates the penalty that the training
time of the current training round does not meet the time
requirements, which is set as a function that increases linearly
with the growth of the time beyond the specified time, we set
p* = 0.5k. Otherwise, p* is set to zero.

2) Design of HcaRL: As can be seen from the above
definition of the four elements of RL customized for the
system model, it is challenging to model the state transition
probability for FL training, especially under the influence of
non-1ID data. In addition, the high dimensional continuous
state space and action space also make us unable to use the
traditional deep Q-network (DQN) algorithm for discrete state
and action space. Inspired by DDPG algorithm, HcaFL is
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Fig. 2. Structure of HcaRL’s Training Network.

designed to handle the above MDP problem. Fig. 2 illustrates
DDPG-based workflow.

As shown in Fig. 2, the agent maintains two components:
i) the actor network, a policy network that determines the
next action, and ii) the critic network, a value network that
assesses the goodness of the state caused by the action. An
action decision is made by the actor for the current state
in accordance with policy 7. The actor’s chosen action is
assessed by the critic network using a state-action function
Q(+). Both of the two networks utilize two deep neural
networks (DNN) subnets with the same structure: the main
network and the target network, to build the learning agent.
The roles of the two subnets are: the main network interacts
directly with the environment and it is updated depending on
the feedback from the environment; the target network is a
soft copy of the main network and is used as a reference
point for the update of the main network. The main idea of
DDPG is to learn the state-action function corresponding to the
optimal policy 7*, which is accomplished by gradually training
the networks for the actor and the critic until convergence.
Transitions for the training stage are saved in an experience
replay buffer of size |Ry|.
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Algorithm 2 HcaRL, Aggregation Weight Allocation and
Client Selection
1: Initialize the weights of critic network ¢ and actor network
0, target networks ¢’ « (; 6’ + 0, replay buffer R,
hyper-parameters 7, 3.
for episode 1,2,..., EP do
Initialize a random process A for exploration of action;
Receive the initial state s';
for k=1,2,...,K do
The agent decides the aggregation weight {w¥};cp
based on the exploration and policy;

A o

7: Sort the clients by the w¥ in descending order, for
the top M clients, set ¥ < 1, for the remaining clients,
set z¥ <« 0;

end for
Using {w?, 2¥},cpx to perform one round FL proce-
dures,

i.e., execute action a”;

10: Finish global aggregation for round k, and receive the
corresponding rewards 7% according to Eq. (15);

11:  Observe new state s’

122 Store {s*,a*,r*, s'*} in replay buffer Ry;

13: Sample a random mini-batch of ) experiences
{s?,a?,rj, s} k1 from Ry;
14: Update critic by minimizing the loss
L(Q) = by Yp(QUsk, ab) — (¥ + BQ/ (5", a™)))2:
15: Update actor by maximizing the policy objective
update
network function according to Eq. (16);
16: Update the corresponding parameters of target net-
work:
17 0 «—nf+ (1—n)d
18 ¢ ¢+ (1—n)C

19: end for

Specifically, in the k-th transition {s*,a”* r* s}, the actor
network aims to maximize the expected cumulatlve reward:

J(mo) = / 4" (s)Q(s, mo(s), ¢) ds

= Eskwdﬂ' [Q(Sky k)ag)}

where ( is the critic network, 6 is the actor network. Eq. (16)
calculates the expected cumulative reward of the policy by
integrating over all possible states s* according to the state
distribution d”™ induced by the policy 7y, and computing the
expected Q-values for actions chosen by the policy in each
state.

The gradient update method of the actor is the gradient
ascent method:

mo(s (16)

0 =04 VoJ(mg) =0+ VeQ(mg) (17)

where 7y denotes the policy network, 6 denotes its parameters,
Q denotes the critic network, and ¢ denotes its parameters.
d™(s) indicates the probability distribution of the state under
the policy.
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In order for the Q value network to accurately assess the
actor, the critic network’s objective is to minimize the loss:

L(Q) = E[(Q(s*,a") — y)?] (18)

and
y=r"+BQ (s, a")

where Q'(+) is the state-action function for the target network.
Since the loss function is continuously differentiable, L(Q))
can be modified using its gradient.

Algorithm Details. The client selection and aggregation
weight optimization strategy based on the DDPG algorithm
HcaRL is presented in Alg. 2. HcaRL works as follows.

19)

e Firstly, the actor and the critic are initialized. In
addition, an experience replay buffer R; and some hyper-
parameters are also initialized (line 1).

e Secondly, given the local state information s* =
{{F(wF),w" '}, ,t} from the FL environment, the
agent determines clients’ aggregation weight {w?};cqx
based on exploration noise and its own policy (line 6).
Then the clients are sorted in the descending order of w¥.
The top M clients are selected for the aggregation using
our client selection strategy. If the client i is chosen, 2% =
1 and reallocate the aggregation weights for these chosen
clients according to the weight proportion. Note that some
tricks are used to improve the effectiveness of HcaRL.
The input (i.e., state of the agent) should be normalized to
avoid over-fitting. After the actions are conducted jointly
by all the clients, FL environment interacts with the agent,
and then it returns the corresponding reward 7% to the
agent. After local updates, the FL environment turns to
the next state (line 10). The agent then observes the
next state s’* and stores the tuple {s*, a*,r* s'*} in its
own replay buffer R;, which contains the experiences of
historical tuples (line 11).

o Thirdly, the agent executes the following procedures to
update its actor and critic networks throughout the entire
episode. The agent samples the random mini-batch of
VY samples from R; (line 12). Then, O of the behavior
critic is updated by minimizing the difference between
Q(s*,a*) and 7% + BQ'(s'%, a’*) among V samples (line
14). Similarly, parameter of the actor network is updated
based on gradient ascent computation (line 15).

e Finally, the target network parameters are changed using
the idea of soft update when the agent eventually updates
their behavior networks (lines 16-18).

3) FL Architecture With HcaRL: Next we summarize the
whole process of the FL training framework that integrates
HcaRL as each round’s client selection and aggregation pro-
cedure.

When a FL job arrives with its own requirements includ-
ing completion time C, model accuracy ¢ and requirement
preference «, HcaRL first customizes the control parameters
of the whole training process, including number of training
rounds K, number of participating clients per round M, and
number of local iterations per round 7 according to Alg. 1.
Then before each training round, the knowledge related to

training is first fed into our DRL module, which determines
the participating client subset and each participating client’s
aggregation weight. Following this decision, clients collabo-
rate on the current round of training, and finally get a global
model meeting the job requirement.

VI. PERFORMANCE EVALUATION
A. Experimental Setup

FL Platform and Model. The testbed experiments are
carried out on the FL platform FAVOR [16]. We create 100
clients and each client with a PyTorch model is simulated
as a thread running synchronously in a global iteration. We
conduct experiments to train a classic CNN model with 5 x 5
convolutional layers. The output channels of the first and
second layers are 16 and 32 respectively, and each layer has
a 2 x 2 max pooling. The training task is multi-classification,
and we use cross-entropy as the loss function. By default, we
set oo = 1.

Datasets. We evaluate the performance of our frameworks
using three widely-used datasets: MNIST, Fashion-MNIST
(FMNIST), and CIFAR-10. These datasets are chosen for their
diverse characteristics and suitability for federated learning
tasks.

e MNIST: Contains 60,000 training images and 10,000 test
images of handwritten digits (28 x 28 grayscale images).

e FMNIST: Contains 60,000 training images and 10,000
test images of fashion products (28 x 28 grayscale
images).

e CIFAR-10: Contains 50,000 training images and 10,000
test images of colored images (32 x 32) from 10 classes.

Simulating Non-IID Data Distributions. To simulate non-
IID data distributions across clients, we follow a specific
method to allocate and update client datasets. This method
ensures that each client’s dataset reflects the characteristics
of real-world data, which is often imbalanced and diverse.
i) Initial Data Allocation: At the beginning of each round,
each client is assigned an initial dataset from the main dataset
(e.g., MNIST, FMNIST, or CIFAR-10). In the initial data
allocation for each client, a major class is randomly selected
from the dataset (e.g., digit ”3” in MNIST), and 70% of
the client’s dataset is composed of randomly chosen samples
from this major class using numpy.random.choice to ensure
diversity. The remaining 30% of the dataset is filled with
samples randomly selected from other classes to introduce data
diversity and imbalance, maintaining the non-IID characteristic
while ensuring each client’s dataset is representative of the
overall dataset. ii) Dynamic Data Update: After each training
round, clients receive a new subset of data to simulate dynamic
changes, allocated in the same 7:3 ratio between the major
and minor classes as the initial setup. Specifically, 10% of
the client’s existing data is randomly selected and replaced
with this new data, ensuring the dataset evolves over time to
reflect real-world scenarios where client data changes between
rounds. iii) Pre-Communication Data Preparation: Before
each communication round, we calculate the relevance ¥ by
Eq. (5), and the similarity by Eq. (6). We use cross-entropy
to measure the loss. The values of job completion time and
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TABLE I
THE VALUE OF THREE PARAMETERS FOR DIFFERENT «
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Fig. 3. Normalized completion time, model loss and their weighted sum.

loss are mapped to the range of 0-1 for normalized processing,
according to the actual observed time and loss range.

Benchmarks. Taking into account many factors, such as
problem relevance, timeliness and advancement, we selected
three benchmark algorithms for performance comparison:
FedAvg, FAIR, and CMFL. i) FedAvg is one of the fundamental
and widely-used federated learning frameworks. By comparing
our proposed frameworks with FedAvg, we can assess the
overall performance improvement of it. FAIR and CMFL,
on the other hand, focus on optimizing different stages and
have achieved significant improvements. ii) FAIR emphasizes
optimization during the client selection stage. By defining
and measuring historical quality of clients, FAIR selects high-
quality participating clients, effectively enhancing training
performance. Comparison with FAIR allows us to measure
Hca’s advancement in client selection. iii) CMFL prioritizes
optimization by filtering irrelevant parameters during the
aggregation stage. By comparing with CMFL, we can evaluate
the performance improvement of Hca in the aggregation stage.
We will compare these algorithms with our method from
the perspectives of different stages and overall framework to
comprehensively demonstrate the performance improvement
brought by our algorithm.

B. Performance of Pre-Estimation

We first verify the efficiency of the first stage: the pre-
estimation of three parameters K, M and 7. We train a CNN
model by adopting Hca on non-IID MNIST. To make the time
and loss have the same order of magnitude, we first normalize
two values by scaling down their values respectively. We then
vary the value of « and call Alg. 1 to obtain the value of K, M
and 7, and continue the training by involving the second and
third stage in Hca. Table II shows the value of three parameters
for different «.

Impact of o. We verify the effect of « on job requirements.
Specifically, we compare the model loss, the completion time
and their weighted sum with different a. From Fig. 3, we can
observe that when the value of « increases, the completion
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TABLE III
HYPERPARAMETERS OF DDPG

Parameter Value
Time step K 60
Minibatch size 32
Discounting factor 3 0.9
soft update v 0.01
Learning rate 0.001
Size of replay buffer R, 10000
Optimizer Adam
Activation function ReLU

time (green line) decreases, while the model loss (blue line)
increases, which indicates that « has the trade-off effect
between the time and accuracy requirement.

C. Performance of Client Selection
D. Performance of Model Aggregation
E. Performance of Hca

The details of Sec. VI-C- VI-E are described in our previous
work [53].

F. Performance of HcaRL

In this section, the total FL training framework employing
HcaRL will be contrasted with Hca and other cutting-edge
algorithms in terms of training completion time, model accu-
racy, and personalized requirement.

Settings. Same as above, the FL training system is com-
prised of 1 central server and 100 clients. The FL job is an
image classification task, and a CNN model is trained on three
datasets: MNIST, Fashion-MNIST, and CIFAR-10, which are
distributed to clients in a non-IID manner. For all of the
experiments, we employ the stochastic gradient descent (SGD)
local solver with a learning rate of 0.01 and a local batch size
of 10. For the structure of DRL, the input of the actor network
is the dimension of the state, ie., K +1 = 10 +1 = 11.
Through fully connected transformation and activation func-
tion transformation, the actor outputs 100 action values. The
input of the critic network is the dimension of the state and
the action, i.e., 100 + 11 = 111. These two components are
combined and fed into the full connection layer after the
features are extracted through the full connection layer. The
network then outputs a scalar evaluation value via the full
connection layer, which can be used to evaluate the actions
given by the actor. Note that to ensure the DRL training model
stably converge, the input should be normalized to avoid over-
fitting. Other important simulation parameters are listed in
Table III.

Benchmarks. To evaluate the performance of HcaRL, the
following three benchmarks are compared.

e Hca: which is the FL framework we proposed in Sec. IV.

e FedAvg [4]: which randomly selects participant clients in
each round and allocates aggregation weights according
to the sizes of participant clients’ dataset.
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e FAIR [17]: which selects participant clients with the best
training quality greedily and aggregates the clients by the
same way of FedAvg.

e AdS [41]: which optimizes the client sampling probabil-
ities by considering both communication delay and data
importance to minimize the convergence time.

e PoC [37]: which chooses the clients with the highest local
loss to accelerate convergence and gradually reduce the
size of the candidate client set.

Convergence of HcaRL. Fig. 5 depicts the convergence
curve in terms of average reward during the training process
of the HcaRL. One episode of the HcaRL begins with the
initialization of a FL job and ends when the job achieves
the target accuracy or reaches the required completion time.
As shown in Fig. 5, the average reward value grows as
the episode increases and eventually converges at around
40 episodes.

Performance of accuracy and convergence. We test the
average accuracy achieved using different algorithms when
three types of FL jobs arrive with different requirements (i.e.,
a =0, 0.5, and 1). Fig. 6 shows the accuracy comparison results
of LeNet model training on the Fashion-MNIST dataset. It
can be seen that on the basis of Hca, HcaRL has a maximum
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Fig. 7. Test accuracy curve for LeNet task on non-IID FMNIST.
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Fig. 9. Completion time for LeNet task on non-IID FMNIST.

accuracy improvement of 15% for each type of FL job. Fig. 7
shows the curve of test accuracy for each algorithm in the first
60 rounds of FL training, which reflects the model convergence
of FL training. As shown in Fig. 7, we can see that the
accuracy achieved by HcaRL is higher than that of the other
three algorithms. Specifically, the training accuracy of HcaRL
is 5% higher than that of Hca and better than the other three
algorithms.

Impact of non-I1ID level. Fig. 8 indicates the test accuracy
curve on data distribution of different non-IID degrees (v =
0, 0.5, and 0.8). In our experiment, the value of non-IID degree
is implemented as follows: for example, v =0.3 represents only
30% of the data on each client belongs to one label, and the
remaining 70% of the data belongs to the other labels. It can
be easily observed that the higher the non-IID degree of data
distribution is, the higher the value of v should be set. As
shown in Fig. 8, the higher degree of non-IID in the data
distribution has a greater negative impact on HcaRL, which is
consistent with the common sense. In addition, the accuracy
fluctuation range of different non-IID degrees is less than 0.1.
It can be concluded that the non-IID degree has a small impact
on HcaRL’s performance.

Performance of job completion time. As shown in Fig. 9,
the completion time of HcaRL is shorter than that of the
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other three algorithms for three types of FL jobs with dif-
ferent requirements. Specifically, HcaRL can reduce the job
completion time by 23.6%, compared to Hca.

Performance of weighted objective. As shown in Fig. 10,
the weighted objective value of HcaRL is the highest among
the four algorithms for three types of FL jobs with different
requirements. Specifically, HcaRL improves the normalized
weighted objective value by 2.92x, over the baselines in
the best-case scenario, and it increases the objective value
by 17.8%, compared to Hca. We can conclude that HcaRL
performs the best in all cases.

VII. CONCLUSION

In this paper, we propose Hca, a heterogeneous FL frame-
work for balancing job completion time and model accuracy.
Different from existing literature, our framework consists
of three stages. First, we determine the number of training
rounds, the number of iterations and the number of participat-
ing clients in each round, to satisfy FL job’s requirement on
job completion time and model accuracy. Second, a multi-
criteria client selection framework is involved in selecting
the most efficient clients for the FL job. At last, we tailor
an improved model aggregation algorithm to further optimize
the quality of the FL model. On the basis of Hca, we
further propose a RL-based smart client selection and model
aggregation algorithm, HcaRL. The extensive results from
testbed experiments based on real-world data verify that Hca
and HcaRL achieve near-optimal performance in both model
accuracy and job completion time, compared with existing FLL
frameworks. However, the historical effectiveness metric used
for client selection may not always reflect real-time changes
in client capabilities or data distribution, limiting adaptability
to dynamic environments. In the future work, we will develop
real-time adaptation strategies to dynamically adjust to client
and data changes during training, aiming to enhance the
robustness and scalability of the framework. We will also
incorporate additional objectives, such as energy efficiency
or fairness, into the optimization process to address broader
concerns in FL. deployments.
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